mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 21:45:00 +03:00
256 lines
10 KiB
Python
Executable File
256 lines
10 KiB
Python
Executable File
import eventlet
|
||
import socketio
|
||
import sys, os, struct, argparse, logging
|
||
from distutils.util import strtobool
|
||
from datetime import datetime
|
||
from OpenSSL import SSL, crypto
|
||
|
||
import torch
|
||
import numpy as np
|
||
from scipy.io.wavfile import write
|
||
|
||
sys.path.append("/MMVC_Trainer")
|
||
sys.path.append("/MMVC_Trainer/text")
|
||
|
||
|
||
import utils
|
||
import commons
|
||
from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
||
from models import SynthesizerTrn
|
||
from text.symbols import symbols
|
||
from mel_processing import spectrogram_torch
|
||
from text import text_to_sequence, cleaned_text_to_sequence
|
||
|
||
class MyCustomNamespace(socketio.Namespace):
|
||
def __init__(self, namespace, config, model):
|
||
super().__init__(namespace)
|
||
self.hps =utils.get_hparams_from_file(config)
|
||
self.net_g = SynthesizerTrn(
|
||
len(symbols),
|
||
self.hps.data.filter_length // 2 + 1,
|
||
self.hps.train.segment_size // self.hps.data.hop_length,
|
||
n_speakers=self.hps.data.n_speakers,
|
||
**self.hps.model)
|
||
self.net_g.eval()
|
||
self.gpu_num = torch.cuda.device_count()
|
||
print("GPU_NUM:",self.gpu_num)
|
||
utils.load_checkpoint( model, self.net_g, None)
|
||
|
||
def on_connect(self, sid, environ):
|
||
print('[{}] connet sid : {}'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S') , sid))
|
||
# print('[{}] connet env : {}'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S') , environ))
|
||
|
||
def on_request_message(self, sid, msg):
|
||
# print("MESSGaa", msg)
|
||
gpu = int(msg[0])
|
||
srcId = int(msg[1])
|
||
dstId = int(msg[2])
|
||
timestamp = int(msg[3])
|
||
data = msg[4]
|
||
# print(srcId, dstId, timestamp)
|
||
unpackedData = np.array(struct.unpack('<%sh'%(len(data) // struct.calcsize('<h') ), data))
|
||
write("logs/received_data.wav", 24000, unpackedData.astype(np.int16))
|
||
|
||
# self.emit('response', msg)
|
||
|
||
if gpu<0 or self.gpu_num==0 :
|
||
with torch.no_grad():
|
||
|
||
text_norm = text_to_sequence("a", self.hps.data.text_cleaners)
|
||
text_norm = commons.intersperse(text_norm, 0)
|
||
text_norm = torch.LongTensor(text_norm)
|
||
|
||
audio = torch.FloatTensor(unpackedData.astype(np.float32))
|
||
audio_norm = audio /self.hps.data.max_wav_value
|
||
audio_norm = audio_norm.unsqueeze(0)
|
||
|
||
|
||
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
|
||
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
||
center=False)
|
||
spec = torch.squeeze(spec, 0)
|
||
sid = torch.LongTensor([int(srcId)])
|
||
|
||
data = (text_norm, spec, audio_norm, sid)
|
||
|
||
data = TextAudioSpeakerCollate()([data])
|
||
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cpu() for x in data]
|
||
sid_tgt1 = torch.LongTensor([dstId]).cpu()
|
||
audio1 = (self.net_g.cpu().voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy()
|
||
else:
|
||
with torch.no_grad():
|
||
|
||
text_norm = text_to_sequence("a", self.hps.data.text_cleaners)
|
||
text_norm = commons.intersperse(text_norm, 0)
|
||
text_norm = torch.LongTensor(text_norm)
|
||
|
||
audio = torch.FloatTensor(unpackedData.astype(np.float32))
|
||
audio_norm = audio /self.hps.data.max_wav_value
|
||
audio_norm = audio_norm.unsqueeze(0)
|
||
|
||
|
||
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
|
||
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
||
center=False)
|
||
spec = torch.squeeze(spec, 0)
|
||
sid = torch.LongTensor([int(srcId)])
|
||
|
||
data = (text_norm, spec, audio_norm, sid)
|
||
data = TextAudioSpeakerCollate()([data])
|
||
|
||
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda(gpu) for x in data]
|
||
sid_tgt1 = torch.LongTensor([dstId]).cuda(gpu)
|
||
audio1 = (self.net_g.cuda(gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy()
|
||
|
||
audio1 = audio1.astype(np.int16)
|
||
bin = struct.pack('<%sh'%len(audio1), *audio1)
|
||
|
||
# print("return timestamp", timestamp)
|
||
self.emit('response',[timestamp, bin])
|
||
|
||
|
||
|
||
|
||
def on_disconnect(self, sid):
|
||
# print('[{}] disconnect'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S')))
|
||
pass;
|
||
|
||
def setupArgParser():
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument("-p", type=int, default=8080, help="port")
|
||
parser.add_argument("-c", type=str, required=True, help="path for the config.json")
|
||
parser.add_argument("-m", type=str, required=True, help="path for the model file")
|
||
parser.add_argument("--https", type=strtobool, default=False, help="use https")
|
||
parser.add_argument("--httpsKey", type=str, default="ssl.key", help="path for the key of https")
|
||
parser.add_argument("--httpsCert", type=str, default="ssl.cert", help="path for the cert of https")
|
||
parser.add_argument("--httpsSelfSigned", type=strtobool, default=True, help="generate self-signed certificate")
|
||
return parser
|
||
|
||
def create_self_signed_cert(certfile, keyfile, certargs, cert_dir="."):
|
||
C_F = os.path.join(cert_dir, certfile)
|
||
K_F = os.path.join(cert_dir, keyfile)
|
||
if not os.path.exists(C_F) or not os.path.exists(K_F):
|
||
k = crypto.PKey()
|
||
k.generate_key(crypto.TYPE_RSA, 2048)
|
||
cert = crypto.X509()
|
||
cert.get_subject().C = certargs["Country"]
|
||
cert.get_subject().ST = certargs["State"]
|
||
cert.get_subject().L = certargs["City"]
|
||
cert.get_subject().O = certargs["Organization"]
|
||
cert.get_subject().OU = certargs["Org. Unit"]
|
||
cert.get_subject().CN = 'Example'
|
||
cert.set_serial_number(1000)
|
||
cert.gmtime_adj_notBefore(0)
|
||
cert.gmtime_adj_notAfter(315360000)
|
||
cert.set_issuer(cert.get_subject())
|
||
cert.set_pubkey(k)
|
||
cert.sign(k, 'sha1')
|
||
open(C_F, "wb").write(crypto.dump_certificate(crypto.FILETYPE_PEM, cert))
|
||
open(K_F, "wb").write(crypto.dump_privatekey(crypto.FILETYPE_PEM, k))
|
||
|
||
|
||
def printMessage(message, level=0):
|
||
if level == 0:
|
||
print(f"\033[17m{message}\033[0m")
|
||
elif level == 1:
|
||
print(f"\033[34m {message}\033[0m")
|
||
elif level == 2:
|
||
print(f"\033[32m {message}\033[0m")
|
||
else:
|
||
print(f"\033[47m {message}\033[0m")
|
||
|
||
if __name__ == '__main__':
|
||
parser = setupArgParser()
|
||
args = parser.parse_args()
|
||
PORT = args.p
|
||
CONFIG = args.c
|
||
MODEL = args.m
|
||
|
||
printMessage(f"Start MMVC SocketIO Server", level=0)
|
||
printMessage(f"CONFIG:{CONFIG}, MODEL:{MODEL}", level=1)
|
||
|
||
if os.environ["EX_PORT"]:
|
||
EX_PORT = os.environ["EX_PORT"]
|
||
printMessage(f"External_Port:{EX_PORT} Internal_Port:{PORT}", level=1)
|
||
else:
|
||
printMessage(f"Internal_Port:{PORT}", level=1)
|
||
|
||
if os.environ["EX_IP"]:
|
||
EX_IP = os.environ["EX_IP"]
|
||
printMessage(f"External_IP:{EX_IP}", level=1)
|
||
|
||
if args.https and args.httpsSelfSigned == 1:
|
||
# HTTPS(おれおれ証明書生成)
|
||
os.makedirs("./key", exist_ok=True)
|
||
key_base_name = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
||
keyname = f"{key_base_name}.key"
|
||
certname = f"{key_base_name}.cert"
|
||
create_self_signed_cert(certname, keyname, certargs=
|
||
{"Country": "JP",
|
||
"State": "Tokyo",
|
||
"City": "Chuo-ku",
|
||
"Organization": "F",
|
||
"Org. Unit": "F"}, cert_dir="./key")
|
||
key_path = os.path.join("./key", keyname)
|
||
cert_path = os.path.join("./key", certname)
|
||
printMessage(f"protocol: HTTPS(self-signed), key:{key_path}, cert:{cert_path}", level=1)
|
||
elif args.https and args.httpsSelfSigned == 0:
|
||
# HTTPS
|
||
key_path = args.httpsKey
|
||
cert_path = args.httpsCert
|
||
printMessage(f"protocol: HTTPS, key:{key_path}, cert:{cert_path}", level=1)
|
||
else:
|
||
# HTTP
|
||
printMessage(f"protocol: HTTP", level=1)
|
||
|
||
# アドレス表示
|
||
if args.https == 1:
|
||
printMessage(f"open https://<IP>:<PORT>/ with your browser.", level=0)
|
||
else:
|
||
printMessage(f"open http://<IP>:<PORT>/ with your browser.", level=0)
|
||
|
||
if EX_PORT and EX_IP and args.https == 1:
|
||
printMessage(f"In many cases it is one of the following", level=1)
|
||
printMessage(f"https://localhost:{EX_PORT}/", level=1)
|
||
for ip in EX_IP.strip().split(" "):
|
||
printMessage(f"https://{ip}:{EX_PORT}/", level=1)
|
||
elif EX_PORT and EX_IP and args.https == 0:
|
||
printMessage(f"In many cases it is one of the following", level=1)
|
||
printMessage(f"http://localhost:{EX_PORT}/", level=1)
|
||
# for ip in EX_IP.strip().split(" "):
|
||
# print(f" http://{ip}:{EX_PORT}/")
|
||
|
||
|
||
# SocketIOセットアップ
|
||
sio = socketio.Server(cors_allowed_origins='*')
|
||
sio.register_namespace(MyCustomNamespace('/test', CONFIG, MODEL))
|
||
app = socketio.WSGIApp(sio,static_files={
|
||
'': '../frontend/dist',
|
||
'/': '../frontend/dist/index.html',
|
||
})
|
||
|
||
|
||
### log を設定すると通常出力されないログが取得できるようだ。(ログ出力抑制には役立たない?)
|
||
# logger = logging.getLogger("logger")
|
||
# logger.propagate=False
|
||
# handler = logging.FileHandler(filename="logger.log")
|
||
# logger.addHandler(handler)
|
||
|
||
if args.https:
|
||
# HTTPS サーバ起動
|
||
sslWrapper = eventlet.wrap_ssl(
|
||
eventlet.listen(('0.0.0.0',int(PORT))),
|
||
certfile=cert_path,
|
||
keyfile=key_path,
|
||
# server_side=True
|
||
)
|
||
### log を設定すると通常出力されないログが取得できるようだ。(ログ出力抑制には役立たない?)
|
||
# eventlet.wsgi.server(sslWrapper, app, log=logger)
|
||
eventlet.wsgi.server(sslWrapper, app)
|
||
else:
|
||
# HTTP サーバ起動
|
||
### log を設定すると通常出力されないログが取得できるようだ。(ログ出力抑制には役立たない?)
|
||
# eventlet.wsgi.server(eventlet.listen(('0.0.0.0',int(PORT))), app, log=logger)
|
||
eventlet.wsgi.server(eventlet.listen(('0.0.0.0',int(PORT))), app)
|
||
|