voice-changer/server/voice_changer/MMVCv13/TrainerFunctions.py
2023-04-28 13:49:40 +09:00

194 lines
5.5 KiB
Python

import torch
import os
import sys
import json
import logging
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
logger = logging
hann_window = {}
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
if torch.min(y) < -1.0:
print("min value is ", torch.min(y))
if torch.max(y) > 1.0:
print("max value is ", torch.max(y))
global hann_window
dtype_device = str(y.dtype) + "_" + str(y.device)
wnsize_dtype_device = str(win_size) + "_" + dtype_device
if wnsize_dtype_device not in hann_window:
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
dtype=y.dtype, device=y.device
)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window[wnsize_dtype_device],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
spec = torch.view_as_real(spec)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
return spec
class TextAudioSpeakerCollate:
"""Zero-pads model inputs and targets"""
def __init__(self, return_ids=False, no_text=False):
self.return_ids = return_ids
self.no_text = no_text
def __call__(self, batch):
"""Collate's training batch from normalized text, audio and speaker identities
PARAMS
------
batch: [text_normalized, spec_normalized, wav_normalized, sid]
"""
# Right zero-pad all one-hot text sequences to max input length
_, ids_sorted_decreasing = torch.sort(
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
)
max_text_len = max([len(x[0]) for x in batch])
max_spec_len = max([x[1].size(1) for x in batch])
max_wav_len = max([x[2].size(1) for x in batch])
text_lengths = torch.LongTensor(len(batch))
spec_lengths = torch.LongTensor(len(batch))
wav_lengths = torch.LongTensor(len(batch))
sid = torch.LongTensor(len(batch))
text_padded = torch.LongTensor(len(batch), max_text_len)
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
text_padded.zero_()
spec_padded.zero_()
wav_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
row = batch[ids_sorted_decreasing[i]]
text = row[0]
text_padded[i, : text.size(0)] = text
text_lengths[i] = text.size(0)
spec = row[1]
spec_padded[i, :, : spec.size(1)] = spec
spec_lengths[i] = spec.size(1)
wav = row[2]
wav_padded[i, :, : wav.size(1)] = wav
wav_lengths[i] = wav.size(1)
sid[i] = row[3]
if self.return_ids:
return (
text_padded,
text_lengths,
spec_padded,
spec_lengths,
wav_padded,
wav_lengths,
sid,
ids_sorted_decreasing,
)
return (
text_padded,
text_lengths,
spec_padded,
spec_lengths,
wav_padded,
wav_lengths,
sid,
)
def load_checkpoint(checkpoint_path, model, optimizer=None):
assert os.path.isfile(
checkpoint_path
), f"No such file or directory: {checkpoint_path}"
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
iteration = checkpoint_dict["iteration"]
learning_rate = checkpoint_dict["learning_rate"]
if optimizer is not None:
optimizer.load_state_dict(checkpoint_dict["optimizer"])
saved_state_dict = checkpoint_dict["model"]
if hasattr(model, "module"):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
try:
new_state_dict[k] = saved_state_dict[k]
except:
logger.info("%s is not in the checkpoint" % k)
new_state_dict[k] = v
if hasattr(model, "module"):
model.module.load_state_dict(new_state_dict)
else:
model.load_state_dict(new_state_dict)
logger.info(
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
)
return model, optimizer, learning_rate, iteration
def get_hparams_from_file(config_path):
with open(config_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
return hparams
class HParams:
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = HParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()