mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 21:45:00 +03:00
208 lines
7.2 KiB
Python
208 lines
7.2 KiB
Python
import sys
|
|
import os
|
|
from dataclasses import asdict
|
|
import numpy as np
|
|
import torch
|
|
from data.ModelSlot import DDSPSVCModelSlot
|
|
|
|
from voice_changer.DDSP_SVC.deviceManager.DeviceManager import DeviceManager
|
|
from voice_changer.VoiceChangerParamsManager import VoiceChangerParamsManager
|
|
|
|
if sys.platform.startswith("darwin"):
|
|
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
|
|
if len(baseDir) != 1:
|
|
print("baseDir should be only one ", baseDir)
|
|
sys.exit()
|
|
modulePath = os.path.join(baseDir[0], "DDSP-SVC")
|
|
sys.path.append(modulePath)
|
|
else:
|
|
sys.path.append("DDSP-SVC")
|
|
|
|
from .models.diffusion.infer_gt_mel import DiffGtMel
|
|
|
|
from voice_changer.utils.VoiceChangerModel import AudioInOut, VoiceChangerModel
|
|
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
|
|
from voice_changer.DDSP_SVC.DDSP_SVCSetting import DDSP_SVCSettings
|
|
from voice_changer.RVC.embedder.EmbedderManager import EmbedderManager
|
|
|
|
# from Exceptions import NoModeLoadedException
|
|
from voice_changer.DDSP_SVC.SvcDDSP import SvcDDSP
|
|
|
|
|
|
def phase_vocoder(a, b, fade_out, fade_in):
|
|
fa = torch.fft.rfft(a)
|
|
fb = torch.fft.rfft(b)
|
|
absab = torch.abs(fa) + torch.abs(fb)
|
|
n = a.shape[0]
|
|
if n % 2 == 0:
|
|
absab[1:-1] *= 2
|
|
else:
|
|
absab[1:] *= 2
|
|
phia = torch.angle(fa)
|
|
phib = torch.angle(fb)
|
|
deltaphase = phib - phia
|
|
deltaphase = deltaphase - 2 * np.pi * torch.floor(deltaphase / 2 / np.pi + 0.5)
|
|
w = 2 * np.pi * torch.arange(n // 2 + 1).to(a) + deltaphase
|
|
t = torch.arange(n).unsqueeze(-1).to(a) / n
|
|
result = (
|
|
a * (fade_out**2)
|
|
+ b * (fade_in**2)
|
|
+ torch.sum(absab * torch.cos(w * t + phia), -1) * fade_out * fade_in / n
|
|
)
|
|
return result
|
|
|
|
|
|
class DDSP_SVC(VoiceChangerModel):
|
|
initialLoad: bool = True
|
|
|
|
def __init__(self, params: VoiceChangerParams, slotInfo: DDSPSVCModelSlot):
|
|
print("[Voice Changer] [DDSP-SVC] Creating instance ")
|
|
self.voiceChangerType = "DDSP-SVC"
|
|
self.deviceManager = DeviceManager.get_instance()
|
|
self.gpu_num = torch.cuda.device_count()
|
|
self.params = params
|
|
self.settings = DDSP_SVCSettings()
|
|
self.svc_model: SvcDDSP = SvcDDSP()
|
|
self.diff_model: DiffGtMel = DiffGtMel()
|
|
|
|
self.svc_model.setVCParams(params)
|
|
EmbedderManager.initialize(params)
|
|
|
|
self.audio_buffer: AudioInOut | None = None
|
|
self.prevVol = 0.0
|
|
self.slotInfo = slotInfo
|
|
self.initialize()
|
|
|
|
def initialize(self):
|
|
self.device = self.deviceManager.getDevice(self.settings.gpu)
|
|
vcparams = VoiceChangerParamsManager.get_instance().params
|
|
modelPath = os.path.join(
|
|
vcparams.model_dir,
|
|
str(self.slotInfo.slotIndex),
|
|
"model",
|
|
self.slotInfo.modelFile,
|
|
)
|
|
diffPath = os.path.join(
|
|
vcparams.model_dir,
|
|
str(self.slotInfo.slotIndex),
|
|
"diff",
|
|
self.slotInfo.diffModelFile,
|
|
)
|
|
|
|
self.svc_model = SvcDDSP()
|
|
self.svc_model.setVCParams(self.params)
|
|
self.svc_model.update_model(modelPath, self.device)
|
|
self.diff_model = DiffGtMel(device=self.device)
|
|
self.diff_model.flush_model(diffPath, ddsp_config=self.svc_model.args)
|
|
|
|
def update_settings(self, key: str, val: int | float | str):
|
|
if key in self.settings.intData:
|
|
val = int(val)
|
|
setattr(self.settings, key, val)
|
|
if key == "gpu":
|
|
self.initialize()
|
|
elif key in self.settings.floatData:
|
|
setattr(self.settings, key, float(val))
|
|
elif key in self.settings.strData:
|
|
setattr(self.settings, key, str(val))
|
|
else:
|
|
return False
|
|
return True
|
|
|
|
def get_info(self):
|
|
data = asdict(self.settings)
|
|
return data
|
|
|
|
def get_processing_sampling_rate(self):
|
|
return self.svc_model.args.data.sampling_rate
|
|
|
|
def generate_input(
|
|
self,
|
|
newData: AudioInOut,
|
|
inputSize: int,
|
|
crossfadeSize: int,
|
|
solaSearchFrame: int = 0,
|
|
):
|
|
newData = newData.astype(np.float32) / 32768.0
|
|
# newData = newData.astype(np.float32)
|
|
|
|
if self.audio_buffer is not None:
|
|
self.audio_buffer = np.concatenate(
|
|
[self.audio_buffer, newData], 0
|
|
) # 過去のデータに連結
|
|
else:
|
|
self.audio_buffer = newData
|
|
|
|
convertSize = (
|
|
inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize
|
|
)
|
|
|
|
# if convertSize % self.hop_size != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
|
# convertSize = convertSize + (self.hop_size - (convertSize % self.hop_size))
|
|
|
|
convertOffset = -1 * convertSize
|
|
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
|
|
return (self.audio_buffer,)
|
|
|
|
# def _onnx_inference(self, data):
|
|
# if hasattr(self, "onnx_session") is False or self.onnx_session is None:
|
|
# print("[Voice Changer] No onnx session.")
|
|
# raise NoModeLoadedException("ONNX")
|
|
|
|
# raise NoModeLoadedException("ONNX")
|
|
|
|
def _pyTorch_inference(self, data):
|
|
input_wav = data[0]
|
|
_audio, _model_sr = self.svc_model.infer(
|
|
input_wav,
|
|
self.svc_model.args.data.sampling_rate,
|
|
spk_id=self.settings.dstId,
|
|
threhold=self.settings.threshold,
|
|
pitch_adjust=self.settings.tran,
|
|
use_spk_mix=False,
|
|
spk_mix_dict=None,
|
|
use_enhancer=True if self.settings.useEnhancer == 1 else False,
|
|
pitch_extractor_type=self.settings.f0Detector,
|
|
f0_min=50,
|
|
f0_max=1100,
|
|
# safe_prefix_pad_length=0, # TBD なにこれ?
|
|
safe_prefix_pad_length=self.settings.extraConvertSize
|
|
/ self.svc_model.args.data.sampling_rate,
|
|
diff_model=self.diff_model,
|
|
diff_acc=self.settings.diffAcc, # TBD なにこれ?
|
|
diff_spk_id=self.settings.diffSpkId,
|
|
diff_use=True if self.settings.useDiff == 1 else False,
|
|
# diff_use_dpm=True if self.settings.useDiffDpm == 1 else False, # TBD なにこれ?
|
|
method=self.settings.diffMethod,
|
|
k_step=self.settings.kStep, # TBD なにこれ?
|
|
diff_silence=True
|
|
if self.settings.useDiffSilence == 1
|
|
else False, # TBD なにこれ?
|
|
)
|
|
|
|
return _audio.cpu().numpy() * 32768.0
|
|
|
|
def inference(self, data):
|
|
if self.slotInfo.isONNX:
|
|
audio = self._onnx_inference(data)
|
|
else:
|
|
audio = self._pyTorch_inference(data)
|
|
return audio
|
|
|
|
def __del__(self):
|
|
remove_path = os.path.join("DDSP-SVC")
|
|
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
|
|
|
|
for key in list(sys.modules):
|
|
val = sys.modules.get(key)
|
|
try:
|
|
file_path = val.__file__
|
|
if file_path.find("DDSP-SVC" + os.path.sep) >= 0:
|
|
# print("remove", key, file_path)
|
|
sys.modules.pop(key)
|
|
except: # type:ignore # noqa
|
|
pass
|
|
|
|
def get_model_current(self):
|
|
return []
|