mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 21:45:00 +03:00
146 lines
4.9 KiB
Python
Executable File
146 lines
4.9 KiB
Python
Executable File
import uvicorn
|
|
from fastapi import FastAPI
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from pydantic import BaseModel
|
|
from fastapi.encoders import jsonable_encoder
|
|
from fastapi.responses import JSONResponse
|
|
from fastapi.staticfiles import StaticFiles
|
|
|
|
import logging
|
|
import os, sys, base64, traceback, struct
|
|
|
|
import torch
|
|
import numpy as np
|
|
from scipy.io.wavfile import write, read
|
|
|
|
sys.path.append("mod")
|
|
sys.path.append("mod/text")
|
|
|
|
import utils
|
|
from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
|
from models import SynthesizerTrn
|
|
from text.symbols import symbols
|
|
|
|
|
|
class VoiceChanger():
|
|
def __init__(self, config, model):
|
|
self.hps =utils.get_hparams_from_file(config)
|
|
self.net_g = SynthesizerTrn(
|
|
len(symbols),
|
|
self.hps.data.filter_length // 2 + 1,
|
|
self.hps.train.segment_size // self.hps.data.hop_length,
|
|
n_speakers=self.hps.data.n_speakers,
|
|
**self.hps.model)
|
|
self.net_g.eval()
|
|
self.gpu_num = torch.cuda.device_count()
|
|
print("GPU_NUM:",self.gpu_num)
|
|
utils.load_checkpoint( model, self.net_g, None)
|
|
|
|
|
|
def on_request(self, gpu, srcId, dstId, timestamp, wav):
|
|
if wav==0:
|
|
samplerate, data=read("dummy.wav")
|
|
unpackedData = data
|
|
else:
|
|
unpackedData = np.array(struct.unpack('<%sh'%(len(wav) // struct.calcsize('<h') ), wav))
|
|
write("logs/received_data.wav", 24000, unpackedData.astype(np.int16))
|
|
|
|
try:
|
|
if gpu<0 or self.gpu_num==0 :
|
|
with torch.no_grad():
|
|
dataset = TextAudioSpeakerLoader("dummy.txt", self.hps.data, no_use_textfile=True)
|
|
data = dataset.get_audio_text_speaker_pair([ unpackedData, srcId, "a"])
|
|
data = TextAudioSpeakerCollate()([data])
|
|
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cpu() for x in data]
|
|
sid_tgt1 = torch.LongTensor([dstId]).cpu()
|
|
audio1 = (self.net_g.cpu().voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy()
|
|
else:
|
|
with torch.no_grad():
|
|
dataset = TextAudioSpeakerLoader("dummy.txt", self.hps.data, no_use_textfile=True)
|
|
data = dataset.get_audio_text_speaker_pair([ unpackedData, srcId, "a"])
|
|
data = TextAudioSpeakerCollate()([data])
|
|
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda(gpu) for x in data]
|
|
sid_tgt1 = torch.LongTensor([dstId]).cuda(gpu)
|
|
audio1 = (self.net_g.cuda(gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy()
|
|
except Exception as e:
|
|
print("VC PROCESSING!!!! EXCEPTION!!!", e)
|
|
print(traceback.format_exc())
|
|
|
|
audio1 = audio1.astype(np.int16)
|
|
return audio1
|
|
|
|
|
|
logger = logging.getLogger('uvicorn')
|
|
|
|
args = sys.argv
|
|
PORT = args[1]
|
|
CONFIG = args[2]
|
|
MODEL = args[3]
|
|
logger.info('INITIALIZE MODEL')
|
|
voiceChanger = VoiceChanger(CONFIG, MODEL)
|
|
voiceChanger.on_request(0,0,0,0,0)
|
|
|
|
|
|
|
|
app = FastAPI()
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=["*"],
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
app.mount("/front", StaticFiles(directory="../frontend/dist", html=True), name="static")
|
|
|
|
@app.get("/test")
|
|
def get_test():
|
|
try:
|
|
return request.args.get('query', '')
|
|
except Exception as e:
|
|
print("REQUEST PROCESSING!!!! EXCEPTION!!!", e)
|
|
print(traceback.format_exc())
|
|
return str(e)
|
|
|
|
class VoiceModel(BaseModel):
|
|
gpu: int
|
|
srcId: int
|
|
dstId: int
|
|
timestamp: int
|
|
buffer: str
|
|
|
|
@app.post("/test")
|
|
def post_test(voice:VoiceModel):
|
|
global voiceChanger
|
|
try:
|
|
print("POST REQUEST PROCESSING....")
|
|
gpu = voice.gpu
|
|
srcId = voice.srcId
|
|
dstId = voice.dstId
|
|
timestamp = voice.timestamp
|
|
buffer = voice.buffer
|
|
wav = base64.b64decode(buffer)
|
|
|
|
changedVoice = voiceChanger.on_request(gpu, srcId, dstId, timestamp, wav)
|
|
changedVoiceBase64 = base64.b64encode(changedVoice).decode('utf-8')
|
|
|
|
data = {
|
|
"gpu":gpu,
|
|
"srcId":srcId,
|
|
"dstId":dstId,
|
|
"timestamp":timestamp,
|
|
"changedVoiceBase64":changedVoiceBase64
|
|
}
|
|
|
|
json_compatible_item_data = jsonable_encoder(data)
|
|
|
|
return JSONResponse(content=json_compatible_item_data)
|
|
except Exception as e:
|
|
print("REQUEST PROCESSING!!!! EXCEPTION!!!", e)
|
|
print(traceback.format_exc())
|
|
return str(e)
|
|
|
|
if __name__ == '__main__':
|
|
logger.info('START APP')
|
|
uvicorn.run(f"{os.path.basename(__file__)[:-3]}:app", host="0.0.0.0", port=int(PORT), reload=True, log_level="info")
|