voice-changer/server/voice_changer/RVC/export2onnx.py
2023-04-14 15:19:09 +09:00

160 lines
5.0 KiB
Python

import sys
import os
import argparse
from distutils.util import strtobool
import torch
from torch import nn
from onnxsim import simplify
import onnx
from infer_pack.models import TextEncoder256, GeneratorNSF, PosteriorEncoder, ResidualCouplingBlock
class SynthesizerTrnMs256NSFsid_ONNX(nn.Module):
def __init__(
self,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
spk_embed_dim,
gin_channels,
sr,
**kwargs
):
super().__init__()
if (type(sr) == type("strr")):
sr = sr2sr[sr]
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.gin_channels = gin_channels
# self.hop_length = hop_length#
self.spk_embed_dim = spk_embed_dim
self.enc_p = TextEncoder256(
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
)
self.dec = GeneratorNSF(
inter_channels,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels=gin_channels, sr=sr, is_half=kwargs["is_half"]
)
self.enc_q = PosteriorEncoder(
spec_channels,
inter_channels,
hidden_channels,
5,
1,
16,
gin_channels=gin_channels,
)
self.flow = ResidualCouplingBlock(
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
)
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
def forward(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
g = self.emb_g(sid).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
z = self.flow(z_p, x_mask, g=g, reverse=True)
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
return o, x_mask, (z, z_p, m_p, logs_p)
def export2onnx(input_model, output_model, output_model_simple, is_half):
cpt = torch.load(input_model, map_location="cpu")
if is_half:
dev = torch.device("cuda", index=0)
else:
dev = torch.device("cpu")
net_g_onnx = SynthesizerTrnMs256NSFsid_ONNX(*cpt["config"], is_half=is_half)
try:
net_g_onnx.eval().to(dev)
except:
is_half = False
dev = torch.device("cpu")
net_g_onnx.eval().to(dev).float()
net_g_onnx.load_state_dict(cpt["weight"], strict=False)
if is_half:
print("!!!!!!!!!!!!!!!!!! half")
net_g_onnx = net_g_onnx.half()
else:
print("!!!!!!!!!!!!!!!!!! full")
net_g_onnx = net_g_onnx.full()
if is_half:
feats = torch.HalfTensor(1, 2192, 256).to(dev)
else:
feats = torch.FloatTensor(1, 2192, 256).to(dev)
p_len = torch.LongTensor([2192]).to(dev)
pitch = torch.zeros(1, 2192, dtype=torch.int64).to(dev)
pitchf = torch.FloatTensor(1, 2192).to(dev)
sid = torch.LongTensor([0]).to(dev)
input_names = ["feats", "p_len", "pitch", "pitchf", "sid"]
output_names = ["audio", ]
torch.onnx.export(net_g_onnx,
(
feats,
p_len,
pitch,
pitchf,
sid,
),
output_model,
dynamic_axes={
"feats": [1],
"pitch": [1],
"pitchf": [1],
},
do_constant_folding=False,
opset_version=17,
verbose=False,
input_names=input_names,
output_names=output_names)
model_onnx2 = onnx.load(output_model)
model_simp, check = simplify(model_onnx2)
onnx.save(model_simp, output_model_simple)