mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 21:45:00 +03:00
499 lines
21 KiB
Python
Executable File
499 lines
21 KiB
Python
Executable File
import sys
|
|
sys.path.append("MMVC_Client/python")
|
|
|
|
from const import ERROR_NO_ONNX_SESSION, TMP_DIR
|
|
import torch
|
|
import os
|
|
import traceback
|
|
import numpy as np
|
|
from dataclasses import dataclass, asdict
|
|
import resampy
|
|
|
|
import onnxruntime
|
|
|
|
from symbols import symbols
|
|
from models import SynthesizerTrn
|
|
|
|
import pyworld as pw
|
|
from voice_changer.client_modules import convert_continuos_f0, spectrogram_torch, TextAudioSpeakerCollate, get_hparams_from_file, load_checkpoint
|
|
|
|
from voice_changer.MMVCv15 import MMVCv15
|
|
|
|
import time
|
|
|
|
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
|
|
|
|
|
import wave
|
|
|
|
import matplotlib
|
|
matplotlib.use('Agg')
|
|
import pylab
|
|
import librosa
|
|
import librosa.display
|
|
SAMPLING_RATE = 24000
|
|
|
|
|
|
class MockStream:
|
|
"""gi
|
|
オーディオストリーミング入出力をファイル入出力にそのまま置き換えるためのモック
|
|
"""
|
|
|
|
def __init__(self, sampling_rate):
|
|
self.sampling_rate = sampling_rate
|
|
self.start_count = 2
|
|
self.end_count = 2
|
|
self.fr = None
|
|
self.fw = None
|
|
|
|
def open_inputfile(self, input_filename):
|
|
self.fr = wave.open(input_filename, 'rb')
|
|
|
|
def open_outputfile(self, output_filename):
|
|
self.fw = wave.open(output_filename, 'wb')
|
|
self.fw.setnchannels(1)
|
|
self.fw.setsampwidth(2)
|
|
self.fw.setframerate(self.sampling_rate)
|
|
|
|
def read(self, length, exception_on_overflow=False):
|
|
if self.start_count > 0:
|
|
wav = bytes(length * 2)
|
|
self.start_count -= 1 # 最初の2回はダミーの空データ送る
|
|
else:
|
|
wav = self.fr.readframes(length)
|
|
if len(wav) <= 0: # データなくなってから最後の2回はダミーの空データを送る
|
|
wav = bytes(length * 2)
|
|
self.end_count -= 1
|
|
if self.end_count < 0:
|
|
Hyperparameters.VC_END_FLAG = True
|
|
return wav
|
|
|
|
def write(self, wav):
|
|
self.fw.writeframes(wav)
|
|
|
|
def stop_stream(self):
|
|
pass
|
|
|
|
def close(self):
|
|
if self.fr != None:
|
|
self.fr.close()
|
|
self.fr = None
|
|
if self.fw != None:
|
|
self.fw.close()
|
|
self.fw = None
|
|
|
|
|
|
@dataclass
|
|
class VocieChangerSettings():
|
|
gpu: int = 0
|
|
srcId: int = 0
|
|
dstId: int = 101
|
|
|
|
inputSampleRate: int = 24000 # 48000 or 24000
|
|
|
|
crossFadeOffsetRate: float = 0.1
|
|
crossFadeEndRate: float = 0.9
|
|
crossFadeOverlapSize: int = 4096
|
|
|
|
f0Factor: float = 1.0
|
|
f0Detector: str = "dio" # dio or harvest
|
|
recordIO: int = 0 # 0:off, 1:on
|
|
|
|
framework: str = "PyTorch" # PyTorch or ONNX
|
|
pyTorchModelFile: str = ""
|
|
onnxModelFile: str = ""
|
|
configFile: str = ""
|
|
|
|
# ↓mutableな物だけ列挙
|
|
intData = ["gpu", "srcId", "dstId", "inputSampleRate", "crossFadeOverlapSize", "recordIO"]
|
|
floatData = ["crossFadeOffsetRate", "crossFadeEndRate", "f0Factor"]
|
|
strData = ["framework", "f0Detector"]
|
|
|
|
|
|
def readMicrophone(queue, sid, deviceIndex):
|
|
print("READ MIC", queue, sid, deviceIndex)
|
|
|
|
|
|
class VoiceChanger():
|
|
|
|
def __init__(self):
|
|
# 初期化
|
|
self.settings = VocieChangerSettings()
|
|
self.unpackedData_length = 0
|
|
self.net_g = None
|
|
self.onnx_session = None
|
|
self.currentCrossFadeOffsetRate = 0
|
|
self.currentCrossFadeEndRate = 0
|
|
self.currentCrossFadeOverlapSize = 0
|
|
|
|
self.voiceChanger = MMVCv15()
|
|
|
|
self.gpu_num = torch.cuda.device_count()
|
|
self.text_norm = torch.LongTensor([0, 6, 0])
|
|
self.audio_buffer = torch.zeros(1, 0)
|
|
self.prev_audio = np.zeros(1)
|
|
self.mps_enabled = getattr(torch.backends, "mps", None) is not None and torch.backends.mps.is_available()
|
|
|
|
print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num}, mps_enabled:{self.mps_enabled})")
|
|
|
|
def _setupRecordIO(self):
|
|
# IO Recorder Setup
|
|
if hasattr(self, "stream_out"):
|
|
self.stream_out.close()
|
|
mock_stream_out = MockStream(24000)
|
|
stream_output_file = os.path.join(TMP_DIR, "out.wav")
|
|
if os.path.exists(stream_output_file):
|
|
print("delete old analyze file.", stream_output_file)
|
|
os.remove(stream_output_file)
|
|
else:
|
|
print("old analyze file not exist.", stream_output_file)
|
|
|
|
mock_stream_out.open_outputfile(stream_output_file)
|
|
self.stream_out = mock_stream_out
|
|
|
|
if hasattr(self, "stream_in"):
|
|
self.stream_in.close()
|
|
mock_stream_in = MockStream(24000)
|
|
stream_input_file = os.path.join(TMP_DIR, "in.wav")
|
|
if os.path.exists(stream_input_file):
|
|
print("delete old analyze file.", stream_input_file)
|
|
os.remove(stream_input_file)
|
|
else:
|
|
print("old analyze file not exist.", stream_output_file)
|
|
mock_stream_in.open_outputfile(stream_input_file)
|
|
self.stream_in = mock_stream_in
|
|
|
|
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None):
|
|
self.settings.configFile = config
|
|
self.hps = get_hparams_from_file(config)
|
|
if pyTorch_model_file != None:
|
|
self.settings.pyTorchModelFile = pyTorch_model_file
|
|
if onnx_model_file:
|
|
self.settings.onnxModelFile = onnx_model_file
|
|
|
|
# PyTorchモデル生成
|
|
if pyTorch_model_file != None:
|
|
self.net_g = SynthesizerTrn(
|
|
spec_channels=self.hps.data.filter_length // 2 + 1,
|
|
segment_size=self.hps.train.segment_size // self.hps.data.hop_length,
|
|
inter_channels=self.hps.model.inter_channels,
|
|
hidden_channels=self.hps.model.hidden_channels,
|
|
upsample_rates=self.hps.model.upsample_rates,
|
|
upsample_initial_channel=self.hps.model.upsample_initial_channel,
|
|
upsample_kernel_sizes=self.hps.model.upsample_kernel_sizes,
|
|
n_flow=self.hps.model.n_flow,
|
|
dec_out_channels=1,
|
|
dec_kernel_size=7,
|
|
n_speakers=self.hps.data.n_speakers,
|
|
gin_channels=self.hps.model.gin_channels,
|
|
requires_grad_pe=self.hps.requires_grad.pe,
|
|
requires_grad_flow=self.hps.requires_grad.flow,
|
|
requires_grad_text_enc=self.hps.requires_grad.text_enc,
|
|
requires_grad_dec=self.hps.requires_grad.dec
|
|
)
|
|
self.net_g.eval()
|
|
load_checkpoint(pyTorch_model_file, self.net_g, None)
|
|
# utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
|
|
|
|
# ONNXモデル生成
|
|
if onnx_model_file != None:
|
|
ort_options = onnxruntime.SessionOptions()
|
|
ort_options.intra_op_num_threads = 8
|
|
self.onnx_session = onnxruntime.InferenceSession(
|
|
onnx_model_file,
|
|
providers=providers
|
|
)
|
|
return self.get_info()
|
|
|
|
def destroy(self):
|
|
del self.net_g
|
|
del self.onnx_session
|
|
|
|
def get_info(self):
|
|
data = asdict(self.settings)
|
|
|
|
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session != None else []
|
|
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
|
for f in files:
|
|
if data[f] != None and os.path.exists(data[f]):
|
|
data[f] = os.path.basename(data[f])
|
|
else:
|
|
data[f] = ""
|
|
|
|
return data
|
|
|
|
def _get_f0_dio(self, y, sr=SAMPLING_RATE):
|
|
_f0, time = pw.dio(y, sr, frame_period=5)
|
|
f0 = pw.stonemask(y, _f0, time, sr)
|
|
time = np.linspace(0, y.shape[0] / sr, len(time))
|
|
return f0, time
|
|
|
|
def _get_f0_harvest(self, y, sr=SAMPLING_RATE):
|
|
_f0, time = pw.harvest(y, sr, frame_period=5)
|
|
f0 = pw.stonemask(y, _f0, time, sr)
|
|
time = np.linspace(0, y.shape[0] / sr, len(time))
|
|
return f0, time
|
|
|
|
def update_setteings(self, key: str, val: any):
|
|
if key == "onnxExecutionProvider" and self.onnx_session != None:
|
|
if val == "CUDAExecutionProvider":
|
|
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
|
|
self.settings.gpu = 0
|
|
provider_options = [{'device_id': self.settings.gpu}]
|
|
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
|
|
else:
|
|
self.onnx_session.set_providers(providers=[val])
|
|
elif key in self.settings.intData:
|
|
setattr(self.settings, key, int(val))
|
|
if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None:
|
|
providers = self.onnx_session.get_providers()
|
|
print("Providers:", providers)
|
|
if "CUDAExecutionProvider" in providers:
|
|
provider_options = [{'device_id': self.settings.gpu}]
|
|
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
|
|
if key == "crossFadeOffsetRate" or key == "crossFadeEndRate":
|
|
self.unpackedData_length = 0
|
|
if key == "recordIO" and val == 1:
|
|
self._setupRecordIO()
|
|
if key == "recordIO" and val == 0:
|
|
pass
|
|
if key == "recordIO" and val == 2:
|
|
try:
|
|
stream_input_file = os.path.join(TMP_DIR, "in.wav")
|
|
analyze_file_dio = os.path.join(TMP_DIR, "analyze-dio.png")
|
|
analyze_file_harvest = os.path.join(TMP_DIR, "analyze-harvest.png")
|
|
y, sr = librosa.load(stream_input_file, SAMPLING_RATE)
|
|
y = y.astype(np.float64)
|
|
spec = librosa.amplitude_to_db(np.abs(librosa.stft(y, n_fft=2048, win_length=2048, hop_length=128)), ref=np.max)
|
|
f0_dio, times = self._get_f0_dio(y)
|
|
f0_harvest, times = self._get_f0_harvest(y)
|
|
|
|
pylab.close()
|
|
HOP_LENGTH = 128
|
|
img = librosa.display.specshow(spec, sr=SAMPLING_RATE, hop_length=HOP_LENGTH, x_axis='time', y_axis='log', )
|
|
pylab.plot(times, f0_dio, label='f0', color=(0, 1, 1, 0.6), linewidth=3)
|
|
pylab.savefig(analyze_file_dio)
|
|
|
|
pylab.close()
|
|
HOP_LENGTH = 128
|
|
img = librosa.display.specshow(spec, sr=SAMPLING_RATE, hop_length=HOP_LENGTH, x_axis='time', y_axis='log', )
|
|
pylab.plot(times, f0_harvest, label='f0', color=(0, 1, 1, 0.6), linewidth=3)
|
|
pylab.savefig(analyze_file_harvest)
|
|
|
|
except Exception as e:
|
|
print("recordIO exception", e)
|
|
|
|
elif key in self.settings.floatData:
|
|
setattr(self.settings, key, float(val))
|
|
elif key in self.settings.strData:
|
|
setattr(self.settings, key, str(val))
|
|
else:
|
|
print(f"{key} is not mutalbe variable!")
|
|
|
|
return self.get_info()
|
|
|
|
def _generate_strength(self, dataLength: int):
|
|
|
|
if self.unpackedData_length != dataLength or \
|
|
self.currentCrossFadeOffsetRate != self.settings.crossFadeOffsetRate or \
|
|
self.currentCrossFadeEndRate != self.settings.crossFadeEndRate or \
|
|
self.currentCrossFadeOverlapSize != self.settings.crossFadeOverlapSize:
|
|
|
|
self.unpackedData_length = dataLength
|
|
self.currentCrossFadeOffsetRate = self.settings.crossFadeOffsetRate
|
|
self.currentCrossFadeEndRate = self.settings.crossFadeEndRate
|
|
self.currentCrossFadeOverlapSize = self.settings.crossFadeOverlapSize
|
|
|
|
overlapSize = min(self.settings.crossFadeOverlapSize, self.unpackedData_length)
|
|
cf_offset = int(overlapSize * self.settings.crossFadeOffsetRate)
|
|
cf_end = int(overlapSize * self.settings.crossFadeEndRate)
|
|
cf_range = cf_end - cf_offset
|
|
percent = np.arange(cf_range) / cf_range
|
|
|
|
np_prev_strength = np.cos(percent * 0.5 * np.pi) ** 2
|
|
np_cur_strength = np.cos((1 - percent) * 0.5 * np.pi) ** 2
|
|
|
|
self.np_prev_strength = np.concatenate([np.ones(cf_offset), np_prev_strength, np.zeros(overlapSize - cf_offset - len(np_prev_strength))])
|
|
self.np_cur_strength = np.concatenate([np.zeros(cf_offset), np_cur_strength, np.ones(overlapSize - cf_offset - len(np_cur_strength))])
|
|
|
|
self.prev_strength = torch.FloatTensor(self.np_prev_strength)
|
|
self.cur_strength = torch.FloatTensor(self.np_cur_strength)
|
|
|
|
# torch.set_printoptions(edgeitems=2100)
|
|
print("Generated Strengths")
|
|
# print(f"cross fade: start:{cf_offset} end:{cf_end} range:{cf_range}")
|
|
# print(f"target_len:{unpackedData.shape[0]}, prev_len:{len(self.prev_strength)} cur_len:{len(self.cur_strength)}")
|
|
# print("Prev", self.prev_strength)
|
|
# print("Cur", self.cur_strength)
|
|
|
|
# ひとつ前の結果とサイズが変わるため、記録は消去する。
|
|
if hasattr(self, 'prev_audio1') == True:
|
|
delattr(self, "prev_audio1")
|
|
|
|
def _generate_input(self, unpackedData: any, convertSize: int):
|
|
# 今回変換するデータをテンソルとして整形する
|
|
audio = torch.FloatTensor(unpackedData.astype(np.float32)) # float32でtensorfを作成
|
|
audio_norm = audio / self.hps.data.max_wav_value # normalize
|
|
audio_norm = audio_norm.unsqueeze(0) # unsqueeze
|
|
self.audio_buffer = torch.cat([self.audio_buffer, audio_norm], axis=1) # 過去のデータに連結
|
|
# audio_norm = self.audio_buffer[:, -(convertSize + 1280 * 2):] # 変換対象の部分だけ抽出
|
|
audio_norm = self.audio_buffer[:, -(convertSize):] # 変換対象の部分だけ抽出
|
|
self.audio_buffer = audio_norm
|
|
|
|
# TBD: numpy <--> pytorch変換が行ったり来たりしているが、まずは動かすことを最優先。
|
|
audio_norm_np = audio_norm.squeeze().numpy().astype(np.float64)
|
|
if self.settings.f0Detector == "dio":
|
|
_f0, _time = pw.dio(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5)
|
|
f0 = pw.stonemask(audio_norm_np, _f0, _time, self.hps.data.sampling_rate)
|
|
else:
|
|
f0, t = pw.harvest(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5, f0_floor=71.0, f0_ceil=1000.0)
|
|
f0 = convert_continuos_f0(f0, int(audio_norm_np.shape[0] / self.hps.data.hop_length))
|
|
f0 = torch.from_numpy(f0.astype(np.float32))
|
|
|
|
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
|
|
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
|
center=False)
|
|
# dispose_stft_specs = 2
|
|
# spec = spec[:, dispose_stft_specs:-dispose_stft_specs]
|
|
# f0 = f0[dispose_stft_specs:-dispose_stft_specs]
|
|
spec = torch.squeeze(spec, 0)
|
|
sid = torch.LongTensor([int(self.settings.srcId)])
|
|
|
|
# data = (self.text_norm, spec, audio_norm, sid)
|
|
# data = TextAudioSpeakerCollate()([data])
|
|
data = TextAudioSpeakerCollate(
|
|
sample_rate=self.hps.data.sampling_rate,
|
|
hop_size=self.hps.data.hop_length,
|
|
f0_factor=self.settings.f0Factor
|
|
)([(spec, sid, f0)])
|
|
|
|
return data
|
|
|
|
def _onnx_inference(self, data):
|
|
if hasattr(self, "onnx_session") == False or self.onnx_session == None:
|
|
print("[Voice Changer] No ONNX session.")
|
|
return np.zeros(1).astype(np.int16)
|
|
|
|
spec, spec_lengths, sid_src, sin, d = data
|
|
sid_tgt1 = torch.LongTensor([self.settings.dstId])
|
|
audio1 = self.onnx_session.run(
|
|
["audio"],
|
|
{
|
|
"specs": spec.numpy(),
|
|
"lengths": spec_lengths.numpy(),
|
|
"sin": sin.numpy(),
|
|
"d0": d[0][:1].numpy(),
|
|
"d1": d[1][:1].numpy(),
|
|
"d2": d[2][:1].numpy(),
|
|
"d3": d[3][:1].numpy(),
|
|
"sid_src": sid_src.numpy(),
|
|
"sid_tgt": sid_tgt1.numpy()
|
|
})[0][0, 0] * self.hps.data.max_wav_value
|
|
return audio1
|
|
|
|
def _pyTorch_inference(self, data):
|
|
if hasattr(self, "net_g") == False or self.net_g == None:
|
|
print("[Voice Changer] No pyTorch session.")
|
|
return np.zeros(1).astype(np.int16)
|
|
|
|
if self.settings.gpu < 0 or self.gpu_num == 0:
|
|
dev = torch.device("cpu")
|
|
else:
|
|
dev = torch.device("cuda", index=self.settings.gpu)
|
|
|
|
with torch.no_grad():
|
|
spec, spec_lengths, sid_src, sin, d = data
|
|
spec = spec.to(dev)
|
|
spec_lengths = spec_lengths.to(dev)
|
|
sid_src = sid_src.to(dev)
|
|
sin = sin.to(dev)
|
|
d = tuple([d[:1].to(dev) for d in d])
|
|
sid_target = torch.LongTensor([self.settings.dstId]).to(dev)
|
|
|
|
audio1 = self.net_g.to(dev).voice_conversion(spec, spec_lengths, sin, d, sid_src, sid_target)[0, 0].data * self.hps.data.max_wav_value
|
|
result = audio1.float().cpu().numpy()
|
|
return result
|
|
|
|
def on_request(self, unpackedData: any):
|
|
|
|
with Timer("pre-process") as t:
|
|
if self.settings.inputSampleRate != 24000:
|
|
unpackedData = resampy.resample(unpackedData, 48000, 24000)
|
|
convertSize = unpackedData.shape[0] + min(self.settings.crossFadeOverlapSize, unpackedData.shape[0])
|
|
# print(convertSize, unpackedData.shape[0])
|
|
if convertSize < 8192:
|
|
convertSize = 8192
|
|
if convertSize % 128 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
|
convertSize = convertSize + (128 - (convertSize % 128))
|
|
self._generate_strength(unpackedData.shape[0])
|
|
data = self._generate_input(unpackedData, convertSize)
|
|
preprocess_time = t.secs
|
|
|
|
with Timer("main-process") as t:
|
|
try:
|
|
if self.settings.framework == "ONNX":
|
|
audio = self._onnx_inference(data)
|
|
# result = self.voiceChanger._onnx_inference(data, unpackedData.shape[0])
|
|
else:
|
|
audio = self._pyTorch_inference(data)
|
|
# result = self.voiceChanger._pyTorch_inference(data, unpackedData.shape[0])
|
|
|
|
inputSize = unpackedData.shape[0]
|
|
|
|
if hasattr(self, 'np_prev_audio1') == True:
|
|
np.set_printoptions(threshold=10000)
|
|
overlapSize = min(self.settings.crossFadeOverlapSize, inputSize)
|
|
prev_overlap = self.np_prev_audio1[-1 * overlapSize:]
|
|
cur_overlap = audio[-1 * (inputSize + overlapSize):-1 * inputSize]
|
|
# print(prev_overlap.shape, self.np_prev_strength.shape, cur_overlap.shape, self.np_cur_strength.shape)
|
|
# print(">>>>>>>>>>>", -1 * (inputSize + overlapSize), -1 * inputSize, self.np_prev_audio1.shape, overlapSize)
|
|
powered_prev = prev_overlap * self.np_prev_strength
|
|
powered_cur = cur_overlap * self.np_cur_strength
|
|
powered_result = powered_prev + powered_cur
|
|
|
|
cur = audio[-1 * inputSize:-1 * overlapSize]
|
|
result = np.concatenate([powered_result, cur], axis=0)
|
|
else:
|
|
result = np.zeros(1).astype(np.int16)
|
|
self.np_prev_audio1 = audio
|
|
|
|
except Exception as e:
|
|
print("VC PROCESSING!!!! EXCEPTION!!!", e)
|
|
print(traceback.format_exc())
|
|
if hasattr(self, "np_prev_audio1"):
|
|
del self.np_prev_audio1
|
|
if hasattr(self, "prev_audio1"):
|
|
del self.prev_audio1
|
|
return np.zeros(1).astype(np.int16), [0, 0, 0]
|
|
mainprocess_time = t.secs
|
|
|
|
with Timer("post-process") as t:
|
|
|
|
result = result.astype(np.int16)
|
|
# print("on_request result size:",result.shape)
|
|
if self.settings.recordIO == 1:
|
|
self.stream_in.write(unpackedData.astype(np.int16).tobytes())
|
|
self.stream_out.write(result.tobytes())
|
|
|
|
if self.settings.inputSampleRate != 24000:
|
|
result = resampy.resample(result, 24000, 48000).astype(np.int16)
|
|
postprocess_time = t.secs
|
|
|
|
perf = [preprocess_time, mainprocess_time, postprocess_time]
|
|
return result, perf
|
|
|
|
|
|
##############
|
|
class Timer(object):
|
|
def __init__(self, title: str):
|
|
self.title = title
|
|
|
|
def __enter__(self):
|
|
self.start = time.time()
|
|
return self
|
|
|
|
def __exit__(self, *args):
|
|
self.end = time.time()
|
|
self.secs = self.end - self.start
|
|
self.msecs = self.secs * 1000 # millisecs
|