mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 21:45:00 +03:00
426 lines
17 KiB
Python
Executable File
426 lines
17 KiB
Python
Executable File
from typing import Any, Union, cast
|
|
|
|
from const import TMP_DIR, ModelType
|
|
import torch
|
|
import os
|
|
import traceback
|
|
import numpy as np
|
|
from dataclasses import dataclass, asdict, field
|
|
import resampy
|
|
|
|
|
|
from voice_changer.IORecorder import IORecorder
|
|
from voice_changer.utils.LoadModelParams import LoadModelParams
|
|
|
|
from voice_changer.utils.Timer import Timer
|
|
from voice_changer.utils.VoiceChangerModel import AudioInOut
|
|
from Exceptions import (
|
|
DeviceCannotSupportHalfPrecisionException,
|
|
DeviceChangingException,
|
|
HalfPrecisionChangingException,
|
|
NoModeLoadedException,
|
|
NotEnoughDataExtimateF0,
|
|
ONNXInputArgumentException,
|
|
VoiceChangerIsNotSelectedException,
|
|
)
|
|
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
|
|
|
|
STREAM_INPUT_FILE = os.path.join(TMP_DIR, "in.wav")
|
|
STREAM_OUTPUT_FILE = os.path.join(TMP_DIR, "out.wav")
|
|
|
|
|
|
@dataclass
|
|
class VoiceChangerSettings:
|
|
inputSampleRate: int = 48000 # 48000 or 24000
|
|
|
|
crossFadeOffsetRate: float = 0.1
|
|
crossFadeEndRate: float = 0.9
|
|
crossFadeOverlapSize: int = 4096
|
|
|
|
recordIO: int = 0 # 0:off, 1:on
|
|
|
|
performance: list[int] = field(default_factory=lambda: [0, 0, 0, 0])
|
|
|
|
# ↓mutableな物だけ列挙
|
|
intData: list[str] = field(
|
|
default_factory=lambda: [
|
|
"inputSampleRate",
|
|
"crossFadeOverlapSize",
|
|
"recordIO",
|
|
]
|
|
)
|
|
floatData: list[str] = field(
|
|
default_factory=lambda: [
|
|
"crossFadeOffsetRate",
|
|
"crossFadeEndRate",
|
|
]
|
|
)
|
|
strData: list[str] = field(default_factory=lambda: [])
|
|
|
|
|
|
class VoiceChanger:
|
|
ioRecorder: IORecorder
|
|
# sola_buffer: AudioInOut
|
|
|
|
def __init__(self, params: VoiceChangerParams):
|
|
# 初期化
|
|
self.settings = VoiceChangerSettings()
|
|
self.onnx_session = None
|
|
self.currentCrossFadeOffsetRate = 0.0
|
|
self.currentCrossFadeEndRate = 0.0
|
|
self.currentCrossFadeOverlapSize = 0 # setting
|
|
self.crossfadeSize = 0 # calculated
|
|
|
|
self.voiceChanger = None
|
|
self.modelType: ModelType | None = None
|
|
self.params = params
|
|
self.gpu_num = torch.cuda.device_count()
|
|
self.prev_audio = np.zeros(4096)
|
|
self.mps_enabled: bool = getattr(torch.backends, "mps", None) is not None and torch.backends.mps.is_available()
|
|
|
|
print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num}, mps_enabled:{self.mps_enabled})")
|
|
|
|
def switchModelType(self, modelType: ModelType):
|
|
try:
|
|
if self.voiceChanger is not None:
|
|
# return {"status": "ERROR", "msg": "vc is already selected. currently re-select is not implemented"}
|
|
del self.voiceChanger
|
|
self.voiceChanger = None
|
|
|
|
self.modelType = modelType
|
|
if self.modelType == "MMVCv15":
|
|
from voice_changer.MMVCv15.MMVCv15 import MMVCv15
|
|
|
|
self.voiceChanger = MMVCv15() # type: ignore
|
|
elif self.modelType == "MMVCv13":
|
|
from voice_changer.MMVCv13.MMVCv13 import MMVCv13
|
|
|
|
self.voiceChanger = MMVCv13()
|
|
elif self.modelType == "so-vits-svc-40v2":
|
|
from voice_changer.SoVitsSvc40v2.SoVitsSvc40v2 import SoVitsSvc40v2
|
|
|
|
self.voiceChanger = SoVitsSvc40v2(self.params)
|
|
elif self.modelType == "so-vits-svc-40" or self.modelType == "so-vits-svc-40_c":
|
|
from voice_changer.SoVitsSvc40.SoVitsSvc40 import SoVitsSvc40
|
|
|
|
self.voiceChanger = SoVitsSvc40(self.params)
|
|
elif self.modelType == "DDSP-SVC":
|
|
from voice_changer.DDSP_SVC.DDSP_SVC import DDSP_SVC
|
|
|
|
self.voiceChanger = DDSP_SVC(self.params)
|
|
elif self.modelType == "RVC":
|
|
from voice_changer.RVC.RVC import RVC
|
|
|
|
self.voiceChanger = RVC(self.params)
|
|
else:
|
|
from voice_changer.MMVCv13.MMVCv13 import MMVCv13
|
|
|
|
self.voiceChanger = MMVCv13()
|
|
except Exception as e:
|
|
print(e)
|
|
print(traceback.format_exc())
|
|
return {"status": "OK", "msg": "vc is switched."}
|
|
|
|
def getModelType(self):
|
|
if self.modelType is not None:
|
|
return {"status": "OK", "vc": self.modelType}
|
|
else:
|
|
return {"status": "OK", "vc": "none"}
|
|
|
|
def loadModel(self, props: LoadModelParams):
|
|
try:
|
|
if self.voiceChanger is None:
|
|
raise VoiceChangerIsNotSelectedException("Voice Changer is not selected.")
|
|
return self.voiceChanger.loadModel(props)
|
|
except Exception as e:
|
|
print(traceback.format_exc())
|
|
print("[Voice Changer] Model Load Error! Check your model is valid.", e)
|
|
return {"status": "NG"}
|
|
|
|
def get_info(self):
|
|
data = asdict(self.settings)
|
|
if self.voiceChanger is not None:
|
|
data.update(self.voiceChanger.get_info())
|
|
return data
|
|
|
|
def get_performance(self):
|
|
return self.settings.performance
|
|
|
|
def update_settings(self, key: str, val: Any):
|
|
if self.voiceChanger is None:
|
|
print("[Voice Changer] Voice Changer is not selected.")
|
|
return self.get_info()
|
|
|
|
if key in self.settings.intData:
|
|
setattr(self.settings, key, int(val))
|
|
if key == "crossFadeOffsetRate" or key == "crossFadeEndRate":
|
|
self.crossfadeSize = 0
|
|
if key == "recordIO" and val == 1:
|
|
if hasattr(self, "ioRecorder"):
|
|
self.ioRecorder.close()
|
|
self.ioRecorder = IORecorder(STREAM_INPUT_FILE, STREAM_OUTPUT_FILE, self.settings.inputSampleRate)
|
|
if key == "recordIO" and val == 0:
|
|
if hasattr(self, "ioRecorder"):
|
|
self.ioRecorder.close()
|
|
pass
|
|
if key == "recordIO" and val == 2:
|
|
if hasattr(self, "ioRecorder"):
|
|
self.ioRecorder.close()
|
|
|
|
elif key in self.settings.floatData:
|
|
setattr(self.settings, key, float(val))
|
|
elif key in self.settings.strData:
|
|
setattr(self.settings, key, str(val))
|
|
else:
|
|
ret = self.voiceChanger.update_settings(key, val)
|
|
if ret is False:
|
|
pass
|
|
# print(f"({key} is not mutable variable or unknown variable)")
|
|
return self.get_info()
|
|
|
|
def _generate_strength(self, crossfadeSize: int):
|
|
if self.crossfadeSize != crossfadeSize or self.currentCrossFadeOffsetRate != self.settings.crossFadeOffsetRate or self.currentCrossFadeEndRate != self.settings.crossFadeEndRate or self.currentCrossFadeOverlapSize != self.settings.crossFadeOverlapSize:
|
|
self.crossfadeSize = crossfadeSize
|
|
self.currentCrossFadeOffsetRate = self.settings.crossFadeOffsetRate
|
|
self.currentCrossFadeEndRate = self.settings.crossFadeEndRate
|
|
self.currentCrossFadeOverlapSize = self.settings.crossFadeOverlapSize
|
|
|
|
cf_offset = int(crossfadeSize * self.settings.crossFadeOffsetRate)
|
|
cf_end = int(crossfadeSize * self.settings.crossFadeEndRate)
|
|
cf_range = cf_end - cf_offset
|
|
percent = np.arange(cf_range) / cf_range
|
|
|
|
np_prev_strength = np.cos(percent * 0.5 * np.pi) ** 2
|
|
np_cur_strength = np.cos((1 - percent) * 0.5 * np.pi) ** 2
|
|
|
|
self.np_prev_strength = np.concatenate(
|
|
[
|
|
np.ones(cf_offset),
|
|
np_prev_strength,
|
|
np.zeros(crossfadeSize - cf_offset - len(np_prev_strength)),
|
|
]
|
|
)
|
|
self.np_cur_strength = np.concatenate(
|
|
[
|
|
np.zeros(cf_offset),
|
|
np_cur_strength,
|
|
np.ones(crossfadeSize - cf_offset - len(np_cur_strength)),
|
|
]
|
|
)
|
|
|
|
print(f"Generated Strengths: for prev:{self.np_prev_strength.shape}, for cur:{self.np_cur_strength.shape}")
|
|
|
|
# ひとつ前の結果とサイズが変わるため、記録は消去する。
|
|
if hasattr(self, "np_prev_audio1") is True:
|
|
delattr(self, "np_prev_audio1")
|
|
if hasattr(self, "sola_buffer") is True:
|
|
del self.sola_buffer
|
|
|
|
def get_processing_sampling_rate(self):
|
|
if self.voiceChanger is None:
|
|
return 0
|
|
else:
|
|
return self.voiceChanger.get_processing_sampling_rate()
|
|
|
|
# receivedData: tuple of short
|
|
def on_request(self, receivedData: AudioInOut) -> tuple[AudioInOut, list[Union[int, float]]]:
|
|
return self.on_request_sola(receivedData)
|
|
|
|
def on_request_sola(self, receivedData: AudioInOut) -> tuple[AudioInOut, list[Union[int, float]]]:
|
|
try:
|
|
if self.voiceChanger is None:
|
|
raise VoiceChangerIsNotSelectedException("Voice Changer is not selected.")
|
|
|
|
processing_sampling_rate = self.voiceChanger.get_processing_sampling_rate()
|
|
# 前処理
|
|
with Timer("pre-process") as t:
|
|
if self.settings.inputSampleRate != processing_sampling_rate:
|
|
newData = cast(
|
|
AudioInOut,
|
|
resampy.resample(
|
|
receivedData,
|
|
self.settings.inputSampleRate,
|
|
processing_sampling_rate,
|
|
),
|
|
)
|
|
else:
|
|
newData = receivedData
|
|
|
|
sola_search_frame = int(0.012 * processing_sampling_rate)
|
|
# sola_search_frame = 0
|
|
block_frame = newData.shape[0]
|
|
crossfade_frame = min(self.settings.crossFadeOverlapSize, block_frame)
|
|
self._generate_strength(crossfade_frame)
|
|
|
|
data = self.voiceChanger.generate_input(newData, block_frame, crossfade_frame, sola_search_frame)
|
|
preprocess_time = t.secs
|
|
|
|
# 変換処理
|
|
with Timer("main-process") as t:
|
|
# Inference
|
|
audio = self.voiceChanger.inference(data)
|
|
|
|
if hasattr(self, "sola_buffer") is True:
|
|
np.set_printoptions(threshold=10000)
|
|
audio_offset = -1 * (sola_search_frame + crossfade_frame + block_frame)
|
|
audio = audio[audio_offset:]
|
|
|
|
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC, https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI
|
|
cor_nom = np.convolve(
|
|
audio[: crossfade_frame + sola_search_frame],
|
|
np.flip(self.sola_buffer),
|
|
"valid",
|
|
)
|
|
cor_den = np.sqrt(
|
|
np.convolve(
|
|
audio[: crossfade_frame + sola_search_frame] ** 2,
|
|
np.ones(crossfade_frame),
|
|
"valid",
|
|
)
|
|
+ 1e-3
|
|
)
|
|
sola_offset = int(np.argmax(cor_nom / cor_den))
|
|
sola_end = sola_offset + block_frame
|
|
output_wav = audio[sola_offset:sola_end].astype(np.float64)
|
|
output_wav[:crossfade_frame] *= self.np_cur_strength
|
|
output_wav[:crossfade_frame] += self.sola_buffer[:]
|
|
|
|
result = output_wav
|
|
else:
|
|
print("[Voice Changer] warming up... generating sola buffer.")
|
|
result = np.zeros(4096).astype(np.int16)
|
|
|
|
if hasattr(self, "sola_buffer") is True and sola_offset < sola_search_frame:
|
|
offset = -1 * (sola_search_frame + crossfade_frame - sola_offset)
|
|
end = -1 * (sola_search_frame - sola_offset)
|
|
sola_buf_org = audio[offset:end]
|
|
self.sola_buffer = sola_buf_org * self.np_prev_strength
|
|
else:
|
|
self.sola_buffer = audio[-crossfade_frame:] * self.np_prev_strength
|
|
# self.sola_buffer = audio[- crossfade_frame:]
|
|
mainprocess_time = t.secs
|
|
|
|
# 後処理
|
|
with Timer("post-process") as t:
|
|
result = result.astype(np.int16)
|
|
if self.settings.inputSampleRate != processing_sampling_rate:
|
|
# print(
|
|
# "samplingrate",
|
|
# self.settings.inputSampleRate,
|
|
# processing_sampling_rate,
|
|
# )
|
|
outputData = cast(
|
|
AudioInOut,
|
|
resampy.resample(
|
|
result,
|
|
processing_sampling_rate,
|
|
self.settings.inputSampleRate,
|
|
).astype(np.int16),
|
|
)
|
|
else:
|
|
outputData = result
|
|
|
|
print_convert_processing(f" Output data size of {result.shape[0]}/{processing_sampling_rate}hz {outputData.shape[0]}/{self.settings.inputSampleRate}hz")
|
|
|
|
if receivedData.shape[0] != outputData.shape[0]:
|
|
# print(
|
|
# f"Padding, in:{receivedData.shape[0]} out:{outputData.shape[0]}"
|
|
# )
|
|
outputData = pad_array(outputData, receivedData.shape[0])
|
|
# print_convert_processing(
|
|
# f" Padded!, Output data size of {result.shape[0]}/{processing_sampling_rate}hz {outputData.shape[0]}/{self.settings.inputSampleRate}hz")
|
|
pass
|
|
|
|
if self.settings.recordIO == 1:
|
|
self.ioRecorder.writeInput(receivedData)
|
|
self.ioRecorder.writeOutput(outputData.tobytes())
|
|
|
|
postprocess_time = t.secs
|
|
|
|
print_convert_processing(f" [fin] Input/Output size:{receivedData.shape[0]},{outputData.shape[0]}")
|
|
perf = [preprocess_time, mainprocess_time, postprocess_time]
|
|
return outputData, perf
|
|
|
|
except NoModeLoadedException as e:
|
|
print("[Voice Changer] [Exception]", e)
|
|
return np.zeros(1).astype(np.int16), [0, 0, 0]
|
|
except ONNXInputArgumentException as e:
|
|
print("[Voice Changer] [Exception] onnx are waiting valid input.", e)
|
|
return np.zeros(1).astype(np.int16), [0, 0, 0]
|
|
except HalfPrecisionChangingException:
|
|
print("[Voice Changer] Switching model configuration....")
|
|
return np.zeros(1).astype(np.int16), [0, 0, 0]
|
|
except NotEnoughDataExtimateF0:
|
|
print("[Voice Changer] warming up... waiting more data.")
|
|
return np.zeros(1).astype(np.int16), [0, 0, 0]
|
|
except DeviceChangingException as e:
|
|
print("[Voice Changer] embedder:", e)
|
|
return np.zeros(1).astype(np.int16), [0, 0, 0]
|
|
except VoiceChangerIsNotSelectedException:
|
|
print("[Voice Changer] Voice Changer is not selected. Wait a bit and if there is no improvement, please re-select vc.")
|
|
return np.zeros(1).astype(np.int16), [0, 0, 0]
|
|
except DeviceCannotSupportHalfPrecisionException:
|
|
# RVC.pyでfallback処理をするので、ここはダミーデータ返すだけ。
|
|
return np.zeros(1).astype(np.int16), [0, 0, 0]
|
|
except Exception as e:
|
|
print("[Voice Changer] VC PROCESSING EXCEPTION!!!", e)
|
|
print(traceback.format_exc())
|
|
return np.zeros(1).astype(np.int16), [0, 0, 0]
|
|
|
|
def export2onnx(self):
|
|
return self.voiceChanger.export2onnx()
|
|
|
|
##############
|
|
|
|
def merge_models(self, request: str):
|
|
if self.voiceChanger is None:
|
|
print("[Voice Changer] Voice Changer is not selected.")
|
|
return
|
|
self.voiceChanger.merge_models(request)
|
|
return self.get_info()
|
|
|
|
def update_model_default(self):
|
|
if self.voiceChanger is None:
|
|
print("[Voice Changer] Voice Changer is not selected.")
|
|
return
|
|
self.voiceChanger.update_model_default()
|
|
return self.get_info()
|
|
|
|
def update_model_info(self, newData: str):
|
|
if self.voiceChanger is None:
|
|
print("[Voice Changer] Voice Changer is not selected.")
|
|
return
|
|
self.voiceChanger.update_model_info(newData)
|
|
return self.get_info()
|
|
|
|
def upload_model_assets(self, params: str):
|
|
if self.voiceChanger is None:
|
|
print("[Voice Changer] Voice Changer is not selected.")
|
|
return
|
|
self.voiceChanger.upload_model_assets(params)
|
|
return self.get_info()
|
|
|
|
|
|
PRINT_CONVERT_PROCESSING: bool = False
|
|
# PRINT_CONVERT_PROCESSING = True
|
|
|
|
|
|
def print_convert_processing(mess: str):
|
|
if PRINT_CONVERT_PROCESSING is True:
|
|
print(mess)
|
|
|
|
|
|
def pad_array(arr: AudioInOut, target_length: int):
|
|
current_length = arr.shape[0]
|
|
if current_length >= target_length:
|
|
return arr
|
|
else:
|
|
pad_width = target_length - current_length
|
|
pad_left = pad_width // 2
|
|
pad_right = pad_width - pad_left
|
|
# padded_arr = np.pad(
|
|
# arr, (pad_left, pad_right), "constant", constant_values=(0, 0)
|
|
# )
|
|
padded_arr = np.pad(arr, (pad_left, pad_right), "edge")
|
|
return padded_arr
|