voice-changer/server/voice_changer/MMVCv15/MMVCv15.py

253 lines
9.9 KiB
Python

import sys
import os
if sys.platform.startswith('darwin'):
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
if len(baseDir) != 1:
print("baseDir should be only one ", baseDir)
sys.exit()
modulePath = os.path.join(baseDir[0], "MMVC_Client_v15", "python")
sys.path.append(modulePath)
else:
sys.path.append("MMVC_Client_v15/python")
from dataclasses import dataclass, asdict
import numpy as np
import torch
import onnxruntime
import pyworld as pw
from models import SynthesizerTrn
from voice_changer.MMVCv15.client_modules import convert_continuos_f0, spectrogram_torch, get_hparams_from_file, load_checkpoint
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
@dataclass
class MMVCv15Settings():
gpu: int = 0
srcId: int = 0
dstId: int = 101
f0Factor: float = 1.0
f0Detector: str = "dio" # dio or harvest
framework: str = "PyTorch" # PyTorch or ONNX
pyTorchModelFile: str = ""
onnxModelFile: str = ""
configFile: str = ""
# ↓mutableな物だけ列挙
intData = ["gpu", "srcId", "dstId"]
floatData = ["f0Factor"]
strData = ["framework", "f0Detector"]
class MMVCv15:
def __init__(self):
self.settings = MMVCv15Settings()
self.net_g = None
self.onnx_session = None
self.gpu_num = torch.cuda.device_count()
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None):
self.settings.configFile = config
self.hps = get_hparams_from_file(config)
if pyTorch_model_file != None:
self.settings.pyTorchModelFile = pyTorch_model_file
else:
self.settings.pyTorchModelFile = ""
if onnx_model_file:
self.settings.onnxModelFile = onnx_model_file
else:
self.settings.onnxModelFile = ""
print("self.settings.onnxModelFile::", self.settings.onnxModelFile)
# PyTorchモデル生成
self.net_g = SynthesizerTrn(
spec_channels=self.hps.data.filter_length // 2 + 1,
segment_size=self.hps.train.segment_size // self.hps.data.hop_length,
inter_channels=self.hps.model.inter_channels,
hidden_channels=self.hps.model.hidden_channels,
upsample_rates=self.hps.model.upsample_rates,
upsample_initial_channel=self.hps.model.upsample_initial_channel,
upsample_kernel_sizes=self.hps.model.upsample_kernel_sizes,
n_flow=self.hps.model.n_flow,
dec_out_channels=1,
dec_kernel_size=7,
n_speakers=self.hps.data.n_speakers,
gin_channels=self.hps.model.gin_channels,
requires_grad_pe=self.hps.requires_grad.pe,
requires_grad_flow=self.hps.requires_grad.flow,
requires_grad_text_enc=self.hps.requires_grad.text_enc,
requires_grad_dec=self.hps.requires_grad.dec
)
if pyTorch_model_file != None:
self.net_g.eval()
load_checkpoint(pyTorch_model_file, self.net_g, None)
# ONNXモデル生成
self.onxx_input_length = 8192
if onnx_model_file != None:
ort_options = onnxruntime.SessionOptions()
ort_options.intra_op_num_threads = 8
self.onnx_session = onnxruntime.InferenceSession(
onnx_model_file,
providers=providers
)
inputs_info = self.onnx_session.get_inputs()
for i in inputs_info:
# print("ONNX INPUT SHAPE", i.name, i.shape)
if i.name == "sin":
self.onxx_input_length = i.shape[2]
return self.get_info()
def update_setteings(self, key: str, val: any):
if key == "onnxExecutionProvider" and self.settings.onnxModelFile != "": # self.onnx_session != None:
if val == "CUDAExecutionProvider":
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
self.settings.gpu = 0
provider_options = [{'device_id': self.settings.gpu}]
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
else:
self.onnx_session.set_providers(providers=[val])
elif key in self.settings.intData:
setattr(self.settings, key, int(val))
if key == "gpu" and val >= 0 and val < self.gpu_num and self.settings.onnxModelFile != "": # self.onnx_session != None:
providers = self.onnx_session.get_providers()
print("Providers:", providers)
if "CUDAExecutionProvider" in providers:
provider_options = [{'device_id': self.settings.gpu}]
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
else:
return False
return True
def get_info(self):
data = asdict(self.settings)
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.settings.onnxModelFile != "" else []
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
for f in files:
if data[f] != None and os.path.exists(data[f]):
data[f] = os.path.basename(data[f])
else:
data[f] = ""
return data
def get_processing_sampling_rate(self):
return self.hps.data.sampling_rate
def _get_f0(self, detector: str, newData: any):
audio_norm_np = newData.astype(np.float64)
if detector == "dio":
_f0, _time = pw.dio(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5)
f0 = pw.stonemask(audio_norm_np, _f0, _time, self.hps.data.sampling_rate)
else:
f0, t = pw.harvest(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5, f0_floor=71.0, f0_ceil=1000.0)
f0 = convert_continuos_f0(f0, int(audio_norm_np.shape[0] / self.hps.data.hop_length))
f0 = torch.from_numpy(f0.astype(np.float32))
return f0
def _get_spec(self, newData: any):
audio = torch.FloatTensor(newData)
audio_norm = audio.unsqueeze(0) # unsqueeze
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
center=False)
spec = torch.squeeze(spec, 0)
return spec
def generate_input(self, newData: any, inputSize: int, crossfadeSize: int):
newData = newData.astype(np.float32) / self.hps.data.max_wav_value
if hasattr(self, "audio_buffer"):
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
else:
self.audio_buffer = newData
convertSize = inputSize + crossfadeSize
if convertSize < 8192:
convertSize = 8192
if convertSize % self.hps.data.hop_length != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
convertSize = convertSize + (self.hps.data.hop_length - (convertSize % self.hps.data.hop_length))
# ONNX は固定長
if self.settings.framework == "ONNX":
convertSize = self.onxx_input_length
self.audio_buffer = self.audio_buffer[-1 * convertSize:] # 変換対象の部分だけ抽出
f0 = self._get_f0(self.settings.f0Detector, self.audio_buffer) # torch
f0 = (f0 * self.settings.f0Factor).unsqueeze(0).unsqueeze(0)
spec = self._get_spec(self.audio_buffer) # torch
sid = torch.LongTensor([int(self.settings.srcId)])
return [spec, f0, sid]
def _onnx_inference(self, data):
if self.settings.onnxModelFile == "":
print("[Voice Changer] No ONNX session.")
return np.zeros(1).astype(np.int16)
spec, f0, sid_src = data
spec = spec.unsqueeze(0)
spec_lengths = torch.tensor([spec.size(2)])
sid_tgt1 = torch.LongTensor([self.settings.dstId])
sin, d = self.net_g.make_sin_d(f0)
(d0, d1, d2, d3) = d
audio1 = self.onnx_session.run(
["audio"],
{
"specs": spec.numpy(),
"lengths": spec_lengths.numpy(),
"sin": sin.numpy(),
"d0": d0.numpy(),
"d1": d1.numpy(),
"d2": d2.numpy(),
"d3": d3.numpy(),
"sid_src": sid_src.numpy(),
"sid_tgt": sid_tgt1.numpy()
})[0][0, 0] * self.hps.data.max_wav_value
return audio1
def _pyTorch_inference(self, data):
if self.settings.pyTorchModelFile == "":
print("[Voice Changer] No pyTorch session.")
return np.zeros(1).astype(np.int16)
if self.settings.gpu < 0 or self.gpu_num == 0:
dev = torch.device("cpu")
else:
dev = torch.device("cuda", index=self.settings.gpu)
with torch.no_grad():
spec, f0, sid_src = data
spec = spec.unsqueeze(0).to(dev)
spec_lengths = torch.tensor([spec.size(2)]).to(dev)
f0 = f0.to(dev)
sid_src = sid_src.to(dev)
sid_target = torch.LongTensor([self.settings.dstId]).to(dev)
audio1 = self.net_g.to(dev).voice_conversion(spec, spec_lengths, f0, sid_src, sid_target)[0, 0].data * self.hps.data.max_wav_value
result = audio1.float().cpu().numpy()
return result
def inference(self, data):
if self.settings.framework == "ONNX":
audio = self._onnx_inference(data)
else:
audio = self._pyTorch_inference(data)
return audio
def destroy(self):
del self.net_g
del self.onnx_session