voice-changer/server/voice_changer/SoVitsSvc40/SoVitsSvc40.py
2023-08-05 12:33:31 +09:00

451 lines
16 KiB
Python

import sys
import os
from data.ModelSlot import SoVitsSvc40ModelSlot
from voice_changer.VoiceChangerParamsManager import VoiceChangerParamsManager
from voice_changer.utils.VoiceChangerModel import AudioInOut
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
if sys.platform.startswith("darwin"):
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
if len(baseDir) != 1:
print("baseDir should be only one ", baseDir)
sys.exit()
modulePath = os.path.join(baseDir[0], "so-vits-svc-40")
sys.path.append(modulePath)
else:
sys.path.append("so-vits-svc-40")
from dataclasses import dataclass, asdict, field
import numpy as np
import torch
import onnxruntime
# onnxruntime.set_default_logger_severity(3)
import pyworld as pw
# from models import SynthesizerTrn # type:ignore
from .models.models import SynthesizerTrn
from .models.utils import interpolate_f0, get_hparams_from_file, load_checkpoint, repeat_expand_2d, get_hubert_content
from .models.cluster import get_cluster_model, get_cluster_center_result
from fairseq import checkpoint_utils
import librosa
from Exceptions import NoModeLoadedException
providers = [
"OpenVINOExecutionProvider",
"CUDAExecutionProvider",
"DmlExecutionProvider",
"CPUExecutionProvider",
]
@dataclass
class SoVitsSvc40Settings:
gpu: int = -9999
dstId: int = 0
f0Detector: str = "harvest" # dio or harvest
tran: int = 20
noiseScale: float = 0.3
predictF0: int = 0 # 0:False, 1:True
silentThreshold: float = 0.00001
extraConvertSize: int = 1024 * 32
clusterInferRatio: float = 0.1
speakers: dict[str, int] = field(default_factory=lambda: {})
# ↓mutableな物だけ列挙
intData = ["gpu", "dstId", "tran", "predictF0"]
floatData = ["noiseScale", "silentThreshold", "clusterInferRatio"]
strData = ["f0Detector"]
class SoVitsSvc40:
def __init__(self, params: VoiceChangerParams, slotInfo: SoVitsSvc40ModelSlot):
print("[Voice Changer] [so-vits-svc40] Creating instance ")
self.settings = SoVitsSvc40Settings()
self.net_g = None
self.onnx_session = None
self.params = params
# hubert model
try:
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
[self.params.hubert_base],
suffix="",
)
model = models[0]
model.eval()
self.hubert_model = model.cpu()
except Exception as e:
print("EXCEPTION during loading hubert/contentvec model", e)
self.gpu_num = torch.cuda.device_count()
self.audio_buffer: AudioInOut | None = None
self.prevVol = 0
self.slotInfo = slotInfo
self.initialize()
def initialize(self):
print("[Voice Changer] [so-vits-svc40] Initializing... ")
vcparams = VoiceChangerParamsManager.get_instance().params
configPath = os.path.join(vcparams.model_dir, str(self.slotInfo.slotIndex), self.slotInfo.configFile)
modelPath = os.path.join(vcparams.model_dir, str(self.slotInfo.slotIndex), self.slotInfo.modelFile)
self.hps = get_hparams_from_file(configPath)
self.settings.speakers = self.hps.spk
# cluster
try:
if self.slotInfo.clusterFile is not None:
clusterPath = os.path.join(vcparams.model_dir, str(self.slotInfo.slotIndex), self.slotInfo.clusterFile)
self.cluster_model = get_cluster_model(clusterPath)
else:
self.cluster_model = None
except Exception as e:
print("[Voice Changer] [so-vits-svc40] EXCEPTION during loading cluster model ", e)
print("[Voice Changer] [so-vits-svc40] fallback to without cluster")
self.cluster_model = None
# model
if self.slotInfo.isONNX:
providers, options = self.getOnnxExecutionProvider()
self.onnx_session = onnxruntime.InferenceSession(
modelPath,
providers=providers,
provider_options=options,
)
else:
net_g = SynthesizerTrn(
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
**self.hps.model,
)
net_g.eval()
self.net_g = net_g
load_checkpoint(modelPath, self.net_g, None)
def getOnnxExecutionProvider(self):
availableProviders = onnxruntime.get_available_providers()
devNum = torch.cuda.device_count()
if self.settings.gpu >= 0 and "CUDAExecutionProvider" in availableProviders and devNum > 0:
return ["CUDAExecutionProvider"], [{"device_id": self.settings.gpu}]
elif self.settings.gpu >= 0 and "DmlExecutionProvider" in availableProviders:
return ["DmlExecutionProvider"], [{}]
else:
return ["CPUExecutionProvider"], [
{
"intra_op_num_threads": 8,
"execution_mode": onnxruntime.ExecutionMode.ORT_PARALLEL,
"inter_op_num_threads": 8,
}
]
def update_settings(self, key: str, val: int | float | str):
if key in self.settings.intData:
val = int(val)
setattr(self.settings, key, val)
if key == "gpu" and self.slotInfo.isONNX:
providers, options = self.getOnnxExecutionProvider()
if self.onnx_session is not None:
self.onnx_session.set_providers(
providers=providers,
provider_options=options,
)
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
else:
return False
return True
def get_info(self):
data = asdict(self.settings)
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session is not None else []
return data
def get_processing_sampling_rate(self):
if hasattr(self, "hps") is False:
raise NoModeLoadedException("config")
return self.hps.data.sampling_rate
def get_unit_f0(self, audio_buffer, tran):
wav_44k = audio_buffer
if self.settings.f0Detector == "dio":
f0 = compute_f0_dio(
wav_44k,
sampling_rate=self.hps.data.sampling_rate,
hop_length=self.hps.data.hop_length,
)
else:
f0 = compute_f0_harvest(
wav_44k,
sampling_rate=self.hps.data.sampling_rate,
hop_length=self.hps.data.hop_length,
)
if wav_44k.shape[0] % self.hps.data.hop_length != 0:
print(f" !!! !!! !!! wav size not multiple of hopsize: {wav_44k.shape[0] / self.hps.data.hop_length}")
f0, uv = interpolate_f0(f0)
f0 = torch.FloatTensor(f0)
uv = torch.FloatTensor(uv)
f0 = f0 * 2 ** (tran / 12)
f0 = f0.unsqueeze(0)
uv = uv.unsqueeze(0)
wav16k_numpy = librosa.resample(audio_buffer, orig_sr=self.hps.data.sampling_rate, target_sr=16000)
wav16k_tensor = torch.from_numpy(wav16k_numpy)
if (self.settings.gpu < 0 or self.gpu_num == 0) or self.slotInfo.isONNX:
dev = torch.device("cpu")
else:
dev = torch.device("cuda", index=self.settings.gpu)
if hasattr(self, "content_vec_onnx"):
c = self.content_vec_onnx.run(
["units"],
{
"audio": wav16k_numpy.reshape(1, -1),
},
)
c = torch.from_numpy(np.array(c)).squeeze(0).transpose(1, 2)
# print("onnx hubert:", self.content_vec_onnx.get_providers())
else:
if self.hps.model.ssl_dim == 768:
self.hubert_model = self.hubert_model.to(dev)
wav16k_tensor = wav16k_tensor.to(dev)
c = get_hubert_content_layer9(self.hubert_model, wav_16k_tensor=wav16k_tensor)
else:
self.hubert_model = self.hubert_model.to(dev)
wav16k_tensor = wav16k_tensor.to(dev)
c = get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k_tensor)
uv = uv.to(dev)
f0 = f0.to(dev)
c = repeat_expand_2d(c.squeeze(0), f0.shape[1])
if self.settings.clusterInferRatio != 0 and hasattr(self, "cluster_model") and self.cluster_model is not None:
speaker = [key for key, value in self.settings.speakers.items() if value == self.settings.dstId]
if len(speaker) != 1:
pass
# print("not only one speaker found.", speaker)
else:
cluster_c = get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker[0]).T
cluster_c = torch.FloatTensor(cluster_c).to(dev)
c = c.to(dev)
c = self.settings.clusterInferRatio * cluster_c + (1 - self.settings.clusterInferRatio) * c
c = c.unsqueeze(0)
return c, f0, uv
def generate_input(
self,
newData: AudioInOut,
inputSize: int,
crossfadeSize: int,
solaSearchFrame: int = 0,
):
newData = newData.astype(np.float32) / self.hps.data.max_wav_value
if self.audio_buffer is not None:
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
else:
self.audio_buffer = newData
convertSize = inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize
if convertSize % self.hps.data.hop_length != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
convertSize = convertSize + (self.hps.data.hop_length - (convertSize % self.hps.data.hop_length))
convertOffset = -1 * convertSize
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
cropOffset = -1 * (inputSize + crossfadeSize)
cropEnd = -1 * (crossfadeSize)
crop = self.audio_buffer[cropOffset:cropEnd]
rms = np.sqrt(np.square(crop).mean(axis=0))
vol = max(rms, self.prevVol * 0.0)
self.prevVol = vol
c, f0, uv = self.get_unit_f0(self.audio_buffer, self.settings.tran)
return (c, f0, uv, convertSize, vol)
def _onnx_inference(self, data):
convertSize = data[3]
vol = data[4]
data = (
data[0],
data[1],
data[2],
)
if vol < self.settings.silentThreshold:
return np.zeros(convertSize).astype(np.int16)
c, f0, uv = [x.numpy() for x in data]
sid_target = torch.LongTensor([self.settings.dstId]).unsqueeze(0).numpy()
audio1 = (
self.onnx_session.run(
["audio"],
{
"c": c.astype(np.float32),
"f0": f0.astype(np.float32),
"uv": uv.astype(np.float32),
"g": sid_target.astype(np.int64),
"noise_scale": np.array([self.settings.noiseScale]).astype(np.float32),
# "predict_f0": np.array([self.settings.dstId]).astype(np.int64),
},
)[0][0, 0]
* self.hps.data.max_wav_value
)
audio1 = audio1 * vol
result = audio1
return result
def _pyTorch_inference(self, data):
if self.settings.gpu < 0 or self.gpu_num == 0:
dev = torch.device("cpu")
else:
dev = torch.device("cuda", index=self.settings.gpu)
convertSize = data[3]
vol = data[4]
data = (
data[0],
data[1],
data[2],
)
if vol < self.settings.silentThreshold:
return np.zeros(convertSize).astype(np.int16)
with torch.no_grad():
c, f0, uv = [x.to(dev) for x in data]
sid_target = torch.LongTensor([self.settings.dstId]).to(dev).unsqueeze(0)
self.net_g.to(dev)
# audio1 = self.net_g.infer(c, f0=f0, g=sid_target, uv=uv, predict_f0=True, noice_scale=0.1)[0][0, 0].data.float()
predict_f0_flag = True if self.settings.predictF0 == 1 else False
audio1 = self.net_g.infer(
c,
f0=f0,
g=sid_target,
uv=uv,
predict_f0=predict_f0_flag,
noice_scale=self.settings.noiseScale,
)
audio1 = audio1[0][0].data.float()
# audio1 = self.net_g.infer(c, f0=f0, g=sid_target, uv=uv, predict_f0=predict_f0_flag,
# noice_scale=self.settings.noiceScale)[0][0, 0].data.float()
audio1 = audio1 * self.hps.data.max_wav_value
audio1 = audio1 * vol
result = audio1.float().cpu().numpy()
# result = infer_tool.pad_array(result, length)
return result
def inference(self, data):
if self.slotInfo.isONNX:
audio = self._onnx_inference(data)
else:
audio = self._pyTorch_inference(data)
return audio
def __del__(self):
del self.net_g
del self.onnx_session
remove_path = os.path.join("so-vits-svc-40")
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
for key in list(sys.modules):
val = sys.modules.get(key)
try:
file_path = val.__file__
if file_path.find("so-vits-svc-40" + os.path.sep) >= 0:
# print("remove", key, file_path)
sys.modules.pop(key)
except Exception: # type:ignore
pass
def get_model_current(self):
return [
]
def resize_f0(x, target_len):
source = np.array(x)
source[source < 0.001] = np.nan
target = np.interp(
np.arange(0, len(source) * target_len, len(source)) / target_len,
np.arange(0, len(source)),
source,
)
res = np.nan_to_num(target)
return res
def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
if p_len is None:
p_len = wav_numpy.shape[0] // hop_length
f0, t = pw.dio(
wav_numpy.astype(np.double),
fs=sampling_rate,
f0_ceil=800,
frame_period=1000 * hop_length / sampling_rate,
)
f0 = pw.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
for index, pitch in enumerate(f0):
f0[index] = round(pitch, 1)
return resize_f0(f0, p_len)
def compute_f0_harvest(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
if p_len is None:
p_len = wav_numpy.shape[0] // hop_length
f0, t = pw.harvest(
wav_numpy.astype(np.double),
fs=sampling_rate,
frame_period=5.5,
f0_floor=71.0,
f0_ceil=1000.0,
)
for index, pitch in enumerate(f0):
f0[index] = round(pitch, 1)
return resize_f0(f0, p_len)
def get_hubert_content_layer9(hmodel, wav_16k_tensor):
feats = wav_16k_tensor
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
"source": feats.to(wav_16k_tensor.device),
"padding_mask": padding_mask.to(wav_16k_tensor.device),
"output_layer": 9, # layer 9
}
with torch.no_grad():
logits = hmodel.extract_features(**inputs)
return logits[0].transpose(1, 2)