voice-changer/server/voice_changer/RVC/RVC.py
2023-05-16 20:56:17 +09:00

437 lines
15 KiB
Python

from concurrent.futures import ThreadPoolExecutor
import sys
import os
import resampy
from dataclasses import asdict
from typing import cast
import numpy as np
import torch
from MMVCServerSIO import download_no_tqdm
from ModelSample import RVCModelSample, getModelSamples
# avoiding parse arg error in RVC
sys.argv = ["MMVCServerSIO.py"]
if sys.platform.startswith("darwin"):
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
if len(baseDir) != 1:
print("baseDir should be only one ", baseDir)
sys.exit()
modulePath = os.path.join(baseDir[0], "RVC")
sys.path.append(modulePath)
else:
sys.path.append("RVC")
from voice_changer.RVC.modelMerger.MergeModel import merge_model
from voice_changer.RVC.modelMerger.MergeModelRequest import MergeModelRequest
from voice_changer.RVC.ModelSlotGenerator import generateModelSlot
from voice_changer.RVC.RVCSettings import RVCSettings
from voice_changer.RVC.embedder.EmbedderManager import EmbedderManager
from voice_changer.utils.LoadModelParams import LoadModelParams
from voice_changer.utils.VoiceChangerModel import AudioInOut
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
from voice_changer.RVC.onnxExporter.export2onnx import export2onnx
from voice_changer.RVC.pitchExtractor.PitchExtractorManager import PitchExtractorManager
from voice_changer.RVC.pipeline.PipelineGenerator import createPipeline
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
from voice_changer.RVC.pipeline.Pipeline import Pipeline
from Exceptions import NoModeLoadedException
from const import TMP_DIR, UPLOAD_DIR
import shutil
import json
providers = [
"OpenVINOExecutionProvider",
"CUDAExecutionProvider",
"DmlExecutionProvider",
"CPUExecutionProvider",
]
RVC_MODEL_DIRNAME = "rvc"
RVC_MAX_SLOT_NUM = 6
class RVC:
initialLoad: bool = True
settings: RVCSettings = RVCSettings()
pipeline: Pipeline | None = None
deviceManager = DeviceManager.get_instance()
audio_buffer: AudioInOut | None = None
prevVol: float = 0
params: VoiceChangerParams
currentSlot: int = -1
needSwitch: bool = False
def __init__(self, params: VoiceChangerParams):
self.pitchExtractor = PitchExtractorManager.getPitchExtractor(
self.settings.f0Detector
)
self.params = params
EmbedderManager.initialize(params)
self.loadSlots()
print("RVC initialization: ", params)
sampleModels = getModelSamples(params.samples, "RVC")
if sampleModels is not None:
self.settings.sampleModels = sampleModels
# 起動時にスロットにモデルがある場合はロードしておく
if len(self.settings.modelSlots) > 0:
for i, slot in enumerate(self.settings.modelSlots):
if len(slot.modelFile) > 0:
self.prepareModel(i)
self.settings.modelSlotIndex = i
self.switchModel()
self.initialLoad = False
break
def getSampleInfo(self, id: str):
sampleInfos = list(filter(lambda x: x.id == id, self.settings.sampleModels))
if len(sampleInfos) > 0:
return sampleInfos[0]
else:
None
def downloadModelFiles(self, sampleInfo: RVCModelSample):
downloadParams = []
modelPath = os.path.join(TMP_DIR, os.path.basename(sampleInfo.modelUrl))
downloadParams.append(
{
"url": sampleInfo.modelUrl,
"saveTo": modelPath,
"position": 0,
}
)
indexPath = None
if hasattr(sampleInfo, "indexUrl") and sampleInfo.indexUrl != "":
indexPath = os.path.join(TMP_DIR, os.path.basename(sampleInfo.indexUrl))
downloadParams.append(
{
"url": sampleInfo.indexUrl,
"saveTo": indexPath,
"position": 1,
}
)
featurePath = None
if hasattr(sampleInfo, "featureUrl") or sampleInfo.featureUrl != "":
featurePath = os.path.join(TMP_DIR, os.path.basename(sampleInfo.featureUrl))
downloadParams.append(
{
"url": sampleInfo.featureUrl,
"saveTo": featurePath,
"position": 2,
}
)
print("[Voice Changer] Downloading model files...", end="")
with ThreadPoolExecutor() as pool:
pool.map(download_no_tqdm, downloadParams)
print("")
return modelPath, indexPath, featurePath
def loadModel(self, props: LoadModelParams):
target_slot_idx = props.slot
params = props.params
print("loadModel", params)
if len(params["sampleId"]) > 0:
sampleInfo = self.getSampleInfo(params["sampleId"])
if sampleInfo is None:
print("[Voice Changer] sampleInfo is None")
return
modelPath, indexPath, featurePath = self.downloadModelFiles(sampleInfo)
params["files"]["rvcModel"] = modelPath
if indexPath is not None:
params["files"]["rvcIndex"] = indexPath
if featurePath is not None:
params["files"]["rvcFeature"] = featurePath
params["credit"] = sampleInfo.credit
params["description"] = sampleInfo.description
params["name"] = sampleInfo.name
params["sampleId"] = sampleInfo.id
params["termOfUseUrl"] = sampleInfo.termOfUseUrl
slotDir = os.path.join(
self.params.model_dir, RVC_MODEL_DIRNAME, str(target_slot_idx)
)
files = [params["files"]["rvcModel"]]
if "rvcFeature" in params["files"]:
files.append(params["files"]["rvcFeature"])
if "rvcIndex" in params["files"]:
files.append(params["files"]["rvcIndex"])
os.makedirs(slotDir, exist_ok=True)
for f in files:
dst = os.path.join(slotDir, os.path.basename(f))
if os.path.exists(dst):
os.remove(dst)
shutil.move(f, dst)
json.dump(params, open(os.path.join(slotDir, "params.json"), "w"))
self.loadSlots()
# 初回のみロード(起動時にスロットにモデルがあった場合はinitialLoadはFalseになっている)
if self.initialLoad:
self.prepareModel(target_slot_idx)
self.settings.modelSlotIndex = target_slot_idx
self.switchModel()
self.initialLoad = False
elif target_slot_idx == self.currentSlot:
self.prepareModel(target_slot_idx)
return self.get_info()
def loadSlots(self):
dirname = os.path.join(self.params.model_dir, RVC_MODEL_DIRNAME)
self.settings.modelSlots = []
if not os.path.exists(dirname):
return
for slot_idx in range(RVC_MAX_SLOT_NUM):
slotDir = os.path.join(
self.params.model_dir, RVC_MODEL_DIRNAME, str(slot_idx)
)
modelSlot = generateModelSlot(slotDir)
self.settings.modelSlots.append(modelSlot)
def update_settings(self, key: str, val: int | float | str):
if key in self.settings.intData:
# 設定前処理
val = cast(int, val)
if key == "modelSlotIndex":
if val < 0:
return True
val = val % 1000 # Quick hack for same slot is selected
if (
self.settings.modelSlots[val].modelFile is None
or self.settings.modelSlots[val].modelFile == ""
):
print("[Voice Changer] slot does not have model.")
return True
self.prepareModel(val)
# 設定
setattr(self.settings, key, val)
if key == "gpu":
dev = self.deviceManager.getDevice(val)
half = self.deviceManager.halfPrecisionAvailable(val)
# half-precisionの使用可否が変わるときは作り直し
if self.pipeline is not None and self.pipeline.isHalf == half:
print(
"USE EXSISTING PIPELINE",
half,
)
self.pipeline.setDevice(dev)
else:
print("CHAGE TO NEW PIPELINE", half)
self.prepareModel(self.settings.modelSlotIndex)
if key == "enableDirectML":
if self.pipeline is not None and val == 0:
self.pipeline.setDirectMLEnable(False)
elif self.pipeline is not None and val == 1:
self.pipeline.setDirectMLEnable(True)
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
if key == "f0Detector" and self.pipeline is not None:
pitchExtractor = PitchExtractorManager.getPitchExtractor(
self.settings.f0Detector
)
self.pipeline.setPitchExtractor(pitchExtractor)
else:
return False
return True
def prepareModel(self, slot: int):
if slot < 0:
return self.get_info()
modelSlot = self.settings.modelSlots[slot]
print("[Voice Changer] Prepare Model of slot:", slot)
# pipelineの生成
self.next_pipeline = createPipeline(
modelSlot, self.settings.gpu, self.settings.f0Detector
)
# その他の設定
self.next_trans = modelSlot.defaultTrans
self.next_samplingRate = modelSlot.samplingRate
self.next_framework = "ONNX" if modelSlot.isONNX else "PyTorch"
self.needSwitch = True
print("[Voice Changer] Prepare done.")
return self.get_info()
def switchModel(self):
print("[Voice Changer] Switching model..")
self.pipeline = self.next_pipeline
self.settings.tran = self.next_trans
self.settings.modelSamplingRate = self.next_samplingRate
self.settings.framework = self.next_framework
print(
"[Voice Changer] Switching model..done",
)
def get_info(self):
data = asdict(self.settings)
return data
def get_processing_sampling_rate(self):
return self.settings.modelSamplingRate
def generate_input(
self,
newData: AudioInOut,
inputSize: int,
crossfadeSize: int,
solaSearchFrame: int = 0,
):
newData = newData.astype(np.float32) / 32768.0
if self.audio_buffer is not None:
# 過去のデータに連結
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0)
else:
self.audio_buffer = newData
convertSize = (
inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize
)
if convertSize % 128 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
convertSize = convertSize + (128 - (convertSize % 128))
convertOffset = -1 * convertSize
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
# 出力部分だけ切り出して音量を確認。(TODO:段階的消音にする)
cropOffset = -1 * (inputSize + crossfadeSize)
cropEnd = -1 * (crossfadeSize)
crop = self.audio_buffer[cropOffset:cropEnd]
rms = np.sqrt(np.square(crop).mean(axis=0))
vol = max(rms, self.prevVol * 0.0)
self.prevVol = vol
return (self.audio_buffer, convertSize, vol)
def inference(self, data):
if self.settings.modelSlotIndex < 0:
print(
"[Voice Changer] wait for loading model...",
self.settings.modelSlotIndex,
self.currentSlot,
)
raise NoModeLoadedException("model_common")
if self.needSwitch:
print(
f"[Voice Changer] Switch model {self.currentSlot} -> {self.settings.modelSlotIndex}"
)
self.currentSlot = self.settings.modelSlotIndex
self.switchModel()
self.needSwitch = False
half = self.deviceManager.halfPrecisionAvailable(self.settings.gpu)
audio = data[0]
convertSize = data[1]
vol = data[2]
audio = resampy.resample(audio, self.settings.modelSamplingRate, 16000)
if vol < self.settings.silentThreshold:
return np.zeros(convertSize).astype(np.int16)
repeat = 3 if half else 1
repeat *= self.settings.rvcQuality # 0 or 3
sid = 0
f0_up_key = self.settings.tran
index_rate = self.settings.indexRatio
if_f0 = 1 if self.settings.modelSlots[self.currentSlot].f0 else 0
embChannels = self.settings.modelSlots[self.currentSlot].embChannels
audio_out = self.pipeline.exec(
sid,
audio,
f0_up_key,
index_rate,
if_f0,
self.settings.extraConvertSize / self.settings.modelSamplingRate,
embChannels,
repeat,
)
result = audio_out * np.sqrt(vol)
return result
def __del__(self):
del self.pipeline
print("---------- REMOVING ---------------")
remove_path = os.path.join("RVC")
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
for key in list(sys.modules):
val = sys.modules.get(key)
try:
file_path = val.__file__
if file_path.find("RVC" + os.path.sep) >= 0:
print("remove", key, file_path)
sys.modules.pop(key)
except Exception: # type:ignore
# print(e)
pass
def export2onnx(self):
modelSlot = self.settings.modelSlots[self.settings.modelSlotIndex]
if modelSlot.isONNX:
print("[Voice Changer] export2onnx, No pyTorch filepath.")
return {"status": "ng", "path": ""}
output_file_simple = export2onnx(self.settings.gpu, modelSlot)
return {
"status": "ok",
"path": f"/tmp/{output_file_simple}",
"filename": output_file_simple,
}
def merge_models(self, request: str):
print("[Voice Changer] MergeRequest:", request)
req: MergeModelRequest = MergeModelRequest.from_json(request)
merged = merge_model(req)
targetSlot = 0
if req.slot < 0:
targetSlot = len(self.settings.modelSlots) - 1
else:
targetSlot = req.slot
storeDir = os.path.join(UPLOAD_DIR, f"{targetSlot}")
print("[Voice Changer] store merged model to:", storeDir)
os.makedirs(storeDir, exist_ok=True)
storeFile = os.path.join(storeDir, "merged.pth")
torch.save(merged, storeFile)
params = {"trans": req.defaultTrans, "files": {"rvcModel": storeFile}}
props: LoadModelParams = LoadModelParams(
slot=targetSlot, isHalf=True, params=params
)
self.loadModel(props)
self.prepareModel(targetSlot)
self.settings.modelSlotIndex = targetSlot
self.currentSlot = self.settings.modelSlotIndex