mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-24 05:55:01 +03:00
58 lines
1.8 KiB
Python
58 lines
1.8 KiB
Python
import torch
|
|
from torch import device
|
|
import onnxruntime
|
|
from const import EnumInferenceTypes
|
|
import numpy as np
|
|
|
|
from voice_changer.RVC.inferencer.OnnxRVCInferencer import OnnxRVCInferencer
|
|
|
|
providers = ["CPUExecutionProvider"]
|
|
|
|
|
|
class OnnxRVCInferencerNono(OnnxRVCInferencer):
|
|
def loadModel(self, file: str, dev: device, isHalf: bool = True):
|
|
super().setProps(EnumInferenceTypes.onnxRVC, file, dev, isHalf)
|
|
# ort_options = onnxruntime.SessionOptions()
|
|
# ort_options.intra_op_num_threads = 8
|
|
|
|
onnx_session = onnxruntime.InferenceSession(file, providers=providers)
|
|
|
|
# check half-precision
|
|
first_input_type = onnx_session.get_inputs()[0].type
|
|
if first_input_type == "tensor(float)":
|
|
self.isHalf = False
|
|
else:
|
|
self.isHalf = True
|
|
|
|
self.model = onnx_session
|
|
return self
|
|
|
|
def infer(
|
|
self,
|
|
feats: torch.Tensor,
|
|
pitch_length: torch.Tensor,
|
|
pitch: torch.Tensor | None,
|
|
pitchf: torch.Tensor | None,
|
|
sid: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
if self.isHalf:
|
|
audio1 = self.model.run(
|
|
["audio"],
|
|
{
|
|
"feats": feats.cpu().numpy().astype(np.float16),
|
|
"p_len": pitch_length.cpu().numpy().astype(np.int64),
|
|
"sid": sid.cpu().numpy().astype(np.int64),
|
|
},
|
|
)
|
|
else:
|
|
audio1 = self.model.run(
|
|
["audio"],
|
|
{
|
|
"feats": feats.cpu().numpy().astype(np.float32),
|
|
"p_len": pitch_length.cpu().numpy().astype(np.int64),
|
|
"sid": sid.cpu().numpy().astype(np.int64),
|
|
},
|
|
)
|
|
|
|
return torch.tensor(np.array(audio1))
|