mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 21:45:00 +03:00
6aa06851d3
cause tune change
290 lines
11 KiB
Python
290 lines
11 KiB
Python
'''
|
|
VoiceChangerV2向け
|
|
'''
|
|
from dataclasses import asdict
|
|
import numpy as np
|
|
import torch
|
|
from data.ModelSlot import RVCModelSlot
|
|
from mods.log_control import VoiceChangaerLogger
|
|
|
|
from voice_changer.RVC.RVCSettings import RVCSettings
|
|
from voice_changer.RVC.embedder.EmbedderManager import EmbedderManager
|
|
from voice_changer.utils.VoiceChangerModel import AudioInOut, PitchfInOut, FeatureInOut, VoiceChangerModel
|
|
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
|
|
from voice_changer.RVC.onnxExporter.export2onnx import export2onnx
|
|
from voice_changer.RVC.pitchExtractor.PitchExtractorManager import PitchExtractorManager
|
|
from voice_changer.RVC.pipeline.PipelineGenerator import createPipeline
|
|
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
|
|
from voice_changer.RVC.pipeline.Pipeline import Pipeline
|
|
|
|
from Exceptions import DeviceCannotSupportHalfPrecisionException, PipelineCreateException, PipelineNotInitializedException
|
|
import resampy
|
|
from typing import cast
|
|
|
|
logger = VoiceChangaerLogger.get_instance().getLogger()
|
|
|
|
|
|
class RVCr2(VoiceChangerModel):
|
|
def __init__(self, params: VoiceChangerParams, slotInfo: RVCModelSlot):
|
|
logger.info("[Voice Changer] [RVCr2] Creating instance ")
|
|
self.deviceManager = DeviceManager.get_instance()
|
|
EmbedderManager.initialize(params)
|
|
PitchExtractorManager.initialize(params)
|
|
self.settings = RVCSettings()
|
|
self.params = params
|
|
# self.pitchExtractor = PitchExtractorManager.getPitchExtractor(self.settings.f0Detector, self.settings.gpu)
|
|
|
|
self.pipeline: Pipeline | None = None
|
|
|
|
self.audio_buffer: AudioInOut | None = None
|
|
self.pitchf_buffer: PitchfInOut | None = None
|
|
self.feature_buffer: FeatureInOut | None = None
|
|
self.prevVol = 0.0
|
|
self.slotInfo = slotInfo
|
|
# self.initialize()
|
|
|
|
def initialize(self):
|
|
logger.info("[Voice Changer][RVCr2] Initializing... ")
|
|
|
|
# pipelineの生成
|
|
try:
|
|
self.pipeline = createPipeline(self.params, self.slotInfo, self.settings.gpu, self.settings.f0Detector)
|
|
except PipelineCreateException as e: # NOQA
|
|
logger.error("[Voice Changer] pipeline create failed. check your model is valid.")
|
|
return
|
|
|
|
# その他の設定
|
|
self.settings.tran = self.slotInfo.defaultTune
|
|
self.settings.indexRatio = self.slotInfo.defaultIndexRatio
|
|
self.settings.protect = self.slotInfo.defaultProtect
|
|
logger.info("[Voice Changer] [RVC] Initializing... done")
|
|
|
|
def setSamplingRate(self, inputSampleRate, outputSampleRate):
|
|
self.inputSampleRate = inputSampleRate
|
|
self.outputSampleRate = outputSampleRate
|
|
# self.initialize()
|
|
|
|
def update_settings(self, key: str, val: int | float | str):
|
|
logger.info(f"[Voice Changer][RVC]: update_settings {key}:{val}")
|
|
if key in self.settings.intData:
|
|
setattr(self.settings, key, int(val))
|
|
if key == "gpu":
|
|
self.deviceManager.setForceTensor(False)
|
|
self.initialize()
|
|
elif key in self.settings.floatData:
|
|
setattr(self.settings, key, float(val))
|
|
elif key in self.settings.strData:
|
|
setattr(self.settings, key, str(val))
|
|
if key == "f0Detector" and self.pipeline is not None:
|
|
pitchExtractor = PitchExtractorManager.getPitchExtractor(self.settings.f0Detector, self.settings.gpu)
|
|
self.pipeline.setPitchExtractor(pitchExtractor)
|
|
else:
|
|
return False
|
|
return True
|
|
|
|
def get_info(self):
|
|
data = asdict(self.settings)
|
|
if self.pipeline is not None:
|
|
pipelineInfo = self.pipeline.getPipelineInfo()
|
|
data["pipelineInfo"] = pipelineInfo
|
|
else:
|
|
data["pipelineInfo"] = "None"
|
|
return data
|
|
|
|
def get_processing_sampling_rate(self):
|
|
return self.slotInfo.samplingRate
|
|
|
|
def generate_input(
|
|
self,
|
|
newData: AudioInOut,
|
|
crossfadeSize: int,
|
|
solaSearchFrame: int,
|
|
extra_frame: int
|
|
):
|
|
# 16k で入ってくる。
|
|
inputSize = newData.shape[0]
|
|
newData = newData.astype(np.float32) / 32768.0
|
|
newFeatureLength = inputSize // 160 # hopsize:=160
|
|
|
|
if self.audio_buffer is not None:
|
|
# 過去のデータに連結
|
|
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0)
|
|
if self.slotInfo.f0:
|
|
self.pitchf_buffer = np.concatenate([self.pitchf_buffer, np.zeros(newFeatureLength)], 0)
|
|
self.feature_buffer = np.concatenate([self.feature_buffer, np.zeros([newFeatureLength, self.slotInfo.embChannels])], 0)
|
|
else:
|
|
self.audio_buffer = newData
|
|
if self.slotInfo.f0:
|
|
self.pitchf_buffer = np.zeros(newFeatureLength)
|
|
self.feature_buffer = np.zeros([newFeatureLength, self.slotInfo.embChannels])
|
|
|
|
convertSize = inputSize + crossfadeSize + solaSearchFrame + extra_frame
|
|
|
|
if convertSize % 160 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
|
convertSize = convertSize + (160 - (convertSize % 160))
|
|
outSize = int(((convertSize - extra_frame) / 16000) * self.slotInfo.samplingRate)
|
|
|
|
# バッファがたまっていない場合はzeroで補う
|
|
if self.audio_buffer.shape[0] < convertSize:
|
|
self.audio_buffer = np.concatenate([np.zeros([convertSize]), self.audio_buffer])
|
|
if self.slotInfo.f0:
|
|
self.pitchf_buffer = np.concatenate([np.zeros([convertSize // 160]), self.pitchf_buffer])
|
|
self.feature_buffer = np.concatenate([np.zeros([convertSize // 160, self.slotInfo.embChannels]), self.feature_buffer])
|
|
|
|
# 不要部分をトリミング
|
|
convertOffset = -1 * convertSize
|
|
featureOffset = convertOffset // 160
|
|
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
|
|
if self.slotInfo.f0:
|
|
self.pitchf_buffer = self.pitchf_buffer[featureOffset:]
|
|
self.feature_buffer = self.feature_buffer[featureOffset:]
|
|
|
|
# 出力部分だけ切り出して音量を確認。(TODO:段階的消音にする)
|
|
cropOffset = -1 * (inputSize + crossfadeSize)
|
|
cropEnd = -1 * (crossfadeSize)
|
|
crop = self.audio_buffer[cropOffset:cropEnd]
|
|
vol = np.sqrt(np.square(crop).mean())
|
|
vol = max(vol, self.prevVol * 0.0)
|
|
self.prevVol = vol
|
|
|
|
return (self.audio_buffer, self.pitchf_buffer, self.feature_buffer, convertSize, vol, outSize)
|
|
|
|
def inference(self, receivedData: AudioInOut, crossfade_frame: int, sola_search_frame: int):
|
|
if self.pipeline is None:
|
|
logger.info("[Voice Changer] Pipeline is not initialized.")
|
|
raise PipelineNotInitializedException()
|
|
|
|
# 処理は16Kで実施(Pitch, embed, (infer))
|
|
receivedData = cast(
|
|
AudioInOut,
|
|
resampy.resample(
|
|
receivedData,
|
|
self.inputSampleRate,
|
|
16000,
|
|
),
|
|
)
|
|
crossfade_frame = int((crossfade_frame / self.inputSampleRate) * 16000)
|
|
sola_search_frame = int((sola_search_frame / self.inputSampleRate) * 16000)
|
|
extra_frame = int((self.settings.extraConvertSize / self.inputSampleRate) * 16000)
|
|
|
|
# 入力データ生成
|
|
data = self.generate_input(receivedData, crossfade_frame, sola_search_frame, extra_frame)
|
|
|
|
audio = data[0]
|
|
pitchf = data[1]
|
|
feature = data[2]
|
|
convertSize = data[3]
|
|
vol = data[4]
|
|
outSize = data[5]
|
|
|
|
if vol < self.settings.silentThreshold:
|
|
return np.zeros(convertSize).astype(np.int16) * np.sqrt(vol)
|
|
|
|
device = self.pipeline.device
|
|
|
|
audio = torch.from_numpy(audio).to(device=device, dtype=torch.float32)
|
|
repeat = 1 if self.settings.rvcQuality else 0
|
|
sid = self.settings.dstId
|
|
f0_up_key = self.settings.tran
|
|
index_rate = self.settings.indexRatio
|
|
protect = self.settings.protect
|
|
|
|
if_f0 = 1 if self.slotInfo.f0 else 0
|
|
embOutputLayer = self.slotInfo.embOutputLayer
|
|
useFinalProj = self.slotInfo.useFinalProj
|
|
|
|
try:
|
|
audio_out, self.pitchf_buffer, self.feature_buffer = self.pipeline.exec(
|
|
sid,
|
|
audio,
|
|
pitchf,
|
|
feature,
|
|
f0_up_key,
|
|
index_rate,
|
|
if_f0,
|
|
# 0,
|
|
self.settings.extraConvertSize / self.inputSampleRate if self.settings.silenceFront else 0., # extaraDataSizeの秒数。入力のサンプリングレートで算出
|
|
embOutputLayer,
|
|
useFinalProj,
|
|
repeat,
|
|
protect,
|
|
outSize
|
|
)
|
|
# result = audio_out.detach().cpu().numpy() * np.sqrt(vol)
|
|
result = audio_out[-outSize:].detach().cpu().numpy() * np.sqrt(vol)
|
|
|
|
result = cast(
|
|
AudioInOut,
|
|
resampy.resample(
|
|
result,
|
|
self.slotInfo.samplingRate,
|
|
self.outputSampleRate,
|
|
),
|
|
)
|
|
|
|
return result
|
|
except DeviceCannotSupportHalfPrecisionException as e: # NOQA
|
|
logger.warn("[Device Manager] Device cannot support half precision. Fallback to float....")
|
|
self.deviceManager.setForceTensor(True)
|
|
self.initialize()
|
|
# raise e
|
|
|
|
return
|
|
|
|
def __del__(self):
|
|
del self.pipeline
|
|
|
|
# print("---------- REMOVING ---------------")
|
|
|
|
# remove_path = os.path.join("RVC")
|
|
# sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
|
|
|
|
# for key in list(sys.modules):
|
|
# val = sys.modules.get(key)
|
|
# try:
|
|
# file_path = val.__file__
|
|
# if file_path.find("RVC" + os.path.sep) >= 0:
|
|
# # print("remove", key, file_path)
|
|
# sys.modules.pop(key)
|
|
# except Exception: # type:ignore
|
|
# # print(e)
|
|
# pass
|
|
|
|
def export2onnx(self):
|
|
modelSlot = self.slotInfo
|
|
|
|
if modelSlot.isONNX:
|
|
logger.warn("[Voice Changer] export2onnx, No pyTorch filepath.")
|
|
return {"status": "ng", "path": ""}
|
|
|
|
if self.pipeline is not None:
|
|
del self.pipeline
|
|
self.pipeline = None
|
|
|
|
torch.cuda.empty_cache()
|
|
self.initialize()
|
|
|
|
output_file_simple = export2onnx(self.settings.gpu, modelSlot)
|
|
|
|
return {
|
|
"status": "ok",
|
|
"path": f"/tmp/{output_file_simple}",
|
|
"filename": output_file_simple,
|
|
}
|
|
|
|
def get_model_current(self):
|
|
return [
|
|
{
|
|
"key": "defaultTune",
|
|
"val": self.settings.tran,
|
|
},
|
|
{
|
|
"key": "defaultIndexRatio",
|
|
"val": self.settings.indexRatio,
|
|
},
|
|
{
|
|
"key": "defaultProtect",
|
|
"val": self.settings.protect,
|
|
},
|
|
]
|