voice-changer/server/voice_changer/DiffusionSVC/pitchExtractor/CrepePitchExtractor.py
2023-07-14 13:54:08 +09:00

60 lines
2.0 KiB
Python

import torchcrepe
import torch
import numpy as np
from const import PitchExtractorType
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
class CrepePitchExtractor(PitchExtractor):
def __init__(self):
super().__init__()
self.pitchExtractorType: PitchExtractorType = "crepe"
if torch.cuda.is_available():
self.device = torch.device("cuda:" + str(torch.cuda.current_device()))
else:
self.device = torch.device("cpu")
def extract(self, audio, pitchf, f0_up_key, sr, window, silence_front=0):
n_frames = int(len(audio) // window) + 1
start_frame = int(silence_front * sr / window)
real_silence_front = start_frame * window / sr
silence_front_offset = int(np.round(real_silence_front * sr))
audio = audio[silence_front_offset:]
f0_min = 50
f0_max = 1100
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
f0, pd = torchcrepe.predict(
audio.unsqueeze(0),
sr,
hop_length=window,
fmin=f0_min,
fmax=f0_max,
# model="tiny",
model="full",
batch_size=256,
decoder=torchcrepe.decode.weighted_argmax,
device=self.device,
return_periodicity=True,
)
f0 = torchcrepe.filter.median(f0, 3) # 本家だとmeanですが、harvestに合わせmedianフィルタ
pd = torchcrepe.filter.median(pd, 3)
f0[pd < 0.1] = 0
f0 = f0.squeeze()
f0 *= pow(2, f0_up_key / 12)
pitchf[-f0.shape[0]:] = f0.detach().cpu().numpy()[:pitchf.shape[0]]
f0bak = pitchf.copy()
f0_mel = 1127.0 * np.log(1.0 + f0bak / 700.0)
f0_mel = np.clip(
(f0_mel - f0_mel_min) * 254.0 / (f0_mel_max - f0_mel_min) + 1.0, 1.0, 255.0
)
pitch_coarse = f0_mel.astype(int)
return pitch_coarse, pitchf