mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 21:45:00 +03:00
41 lines
1.2 KiB
Python
41 lines
1.2 KiB
Python
import torch
|
|
from torch import device
|
|
|
|
from const import EnumInferenceTypes
|
|
from voice_changer.RVC.inferencer.Inferencer import Inferencer
|
|
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
|
|
from .voras_beta.models import Synthesizer
|
|
|
|
|
|
class VoRASInferencer(Inferencer):
|
|
def loadModel(self, file: str, gpu: device):
|
|
super().setProps(EnumInferenceTypes.pyTorchVoRASbeta, file, False, gpu)
|
|
|
|
dev = DeviceManager.get_instance().getDevice(gpu)
|
|
self.isHalf = False # DeviceManager.get_instance().halfPrecisionAvailable(gpu)
|
|
|
|
cpt = torch.load(file, map_location="cpu")
|
|
model = Synthesizer(**cpt["params"])
|
|
|
|
model.eval()
|
|
model.load_state_dict(cpt["weight"], strict=False)
|
|
model.remove_weight_norm()
|
|
model.change_speaker(0)
|
|
|
|
model = model.to(dev)
|
|
|
|
self.model = model
|
|
print("load model comprete")
|
|
return self
|
|
|
|
def infer(
|
|
self,
|
|
feats: torch.Tensor,
|
|
pitch_length: torch.Tensor,
|
|
pitch: torch.Tensor,
|
|
pitchf: torch.Tensor,
|
|
sid: torch.Tensor,
|
|
convert_length: int | None,
|
|
) -> torch.Tensor:
|
|
return self.model.infer(feats, pitch_length, pitch, pitchf, sid)
|