voice-changer/server/voice_changer/RVC/RVC.py

474 lines
18 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import sys
import os
from dataclasses import asdict
from typing import cast
import numpy as np
import torch
import torchaudio
from ModelSample import getModelSamples
from voice_changer.RVC.ModelSlot import ModelSlot
from voice_changer.RVC.SampleDownloader import downloadModelFiles
# avoiding parse arg error in RVC
sys.argv = ["MMVCServerSIO.py"]
if sys.platform.startswith("darwin"):
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
if len(baseDir) != 1:
print("baseDir should be only one ", baseDir)
sys.exit()
modulePath = os.path.join(baseDir[0], "RVC")
sys.path.append(modulePath)
else:
sys.path.append("RVC")
from voice_changer.RVC.modelMerger.MergeModel import merge_model
from voice_changer.RVC.modelMerger.MergeModelRequest import MergeModelRequest
from voice_changer.RVC.ModelSlotGenerator import (
_setInfoByONNX,
_setInfoByPytorch,
)
from voice_changer.RVC.RVCSettings import RVCSettings
from voice_changer.RVC.embedder.EmbedderManager import EmbedderManager
from voice_changer.utils.LoadModelParams import LoadModelParams
from voice_changer.utils.VoiceChangerModel import AudioInOut
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
from voice_changer.RVC.onnxExporter.export2onnx import export2onnx
from voice_changer.RVC.pitchExtractor.PitchExtractorManager import PitchExtractorManager
from voice_changer.RVC.pipeline.PipelineGenerator import createPipeline
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
from voice_changer.RVC.pipeline.Pipeline import Pipeline
from Exceptions import DeviceCannotSupportHalfPrecisionException, NoModeLoadedException
from const import RVC_MODEL_DIRNAME, SAMPLES_JSONS, UPLOAD_DIR
import shutil
import json
class RVC:
initialLoad: bool = True
settings: RVCSettings = RVCSettings()
pipeline: Pipeline | None = None
deviceManager = DeviceManager.get_instance()
audio_buffer: AudioInOut | None = None
prevVol: float = 0
params: VoiceChangerParams
currentSlot: int = 0
needSwitch: bool = False
def __init__(self, params: VoiceChangerParams):
self.pitchExtractor = PitchExtractorManager.getPitchExtractor(
self.settings.f0Detector
)
self.params = params
EmbedderManager.initialize(params)
self.loadSlots()
print("[Voice Changer] RVC initialization: ", params)
# サンプルカタログ作成
sampleJsons: list[str] = []
for url in SAMPLES_JSONS:
filename = os.path.basename(url)
sampleJsons.append(filename)
sampleModels = getModelSamples(sampleJsons, "RVC")
if sampleModels is not None:
self.settings.sampleModels = sampleModels
# 起動時にスロットにモデルがある場合はロードしておく
if len(self.settings.modelSlots) > 0:
for i, slot in enumerate(self.settings.modelSlots):
if len(slot.modelFile) > 0:
self.prepareModel(i)
self.settings.modelSlotIndex = i
self.switchModel(self.settings.modelSlotIndex)
self.initialLoad = False
break
self.prevVol = 0.0
def getSampleInfo(self, id: str):
sampleInfos = list(filter(lambda x: x.id == id, self.settings.sampleModels))
if len(sampleInfos) > 0:
return sampleInfos[0]
else:
None
def moveToModelDir(self, file: str, dstDir: str):
dst = os.path.join(dstDir, os.path.basename(file))
if os.path.exists(dst):
os.remove(dst)
shutil.move(file, dst)
return dst
def loadModel(self, props: LoadModelParams):
target_slot_idx = props.slot
params = props.params
slotInfo: ModelSlot = ModelSlot()
print("loadModel", params)
# サンプルが指定されたときはダウンロードしてメタデータをでっちあげる
if len(params["sampleId"]) > 0:
sampleId = params["sampleId"]
sampleInfo = self.getSampleInfo(sampleId)
useIndex = params["rvcIndexDownload"]
if sampleInfo is None:
print("[Voice Changer] sampleInfo is None")
return
modelPath, indexPath = downloadModelFiles(sampleInfo, useIndex)
slotInfo.modelFile = modelPath
if indexPath is not None:
slotInfo.indexFile = indexPath
slotInfo.sampleId = sampleInfo.id
slotInfo.credit = sampleInfo.credit
slotInfo.description = sampleInfo.description
slotInfo.name = sampleInfo.name
slotInfo.termsOfUseUrl = sampleInfo.termsOfUseUrl
# slotInfo.samplingRate = sampleInfo.sampleRate
# slotInfo.modelType = sampleInfo.modelType
# slotInfo.f0 = sampleInfo.f0
else:
slotInfo.modelFile = params["files"]["rvcModel"]
slotInfo.indexFile = (
params["files"]["rvcIndex"] if "rvcIndex" in params["files"] else None
)
slotInfo.defaultTune = params["defaultTune"]
slotInfo.defaultIndexRatio = params["defaultIndexRatio"]
slotInfo.defaultProtect = params["defaultProtect"]
slotInfo.isONNX = slotInfo.modelFile.endswith(".onnx")
if slotInfo.isONNX:
_setInfoByONNX(slotInfo)
else:
_setInfoByPytorch(slotInfo)
# メタデータを見て、永続化モデルフォルダに移動させる
# その際に、メタデータのファイル格納場所も書き換える
slotDir = os.path.join(
self.params.model_dir, RVC_MODEL_DIRNAME, str(target_slot_idx)
)
os.makedirs(slotDir, exist_ok=True)
slotInfo.modelFile = self.moveToModelDir(slotInfo.modelFile, slotDir)
if slotInfo.indexFile is not None and len(slotInfo.indexFile) > 0:
slotInfo.indexFile = self.moveToModelDir(slotInfo.indexFile, slotDir)
json.dump(asdict(slotInfo), open(os.path.join(slotDir, "params.json"), "w"))
self.loadSlots()
# 初回のみロード(起動時にスロットにモデルがあった場合はinitialLoadはFalseになっている)
if self.initialLoad:
self.prepareModel(target_slot_idx)
self.settings.modelSlotIndex = target_slot_idx
self.switchModel(self.settings.modelSlotIndex)
self.initialLoad = False
elif target_slot_idx == self.currentSlot:
self.prepareModel(target_slot_idx)
return self.get_info()
def loadSlots(self):
dirname = os.path.join(self.params.model_dir, RVC_MODEL_DIRNAME)
if not os.path.exists(dirname):
return
modelSlots: list[ModelSlot] = []
for slot_idx in range(len(self.settings.modelSlots)):
slotDir = os.path.join(
self.params.model_dir, RVC_MODEL_DIRNAME, str(slot_idx)
)
jsonDict = os.path.join(slotDir, "params.json")
if os.path.exists(jsonDict):
jsonDict = json.load(open(os.path.join(slotDir, "params.json")))
slotInfo = ModelSlot(**jsonDict)
else:
slotInfo = ModelSlot()
modelSlots.append(slotInfo)
self.settings.modelSlots = modelSlots
def update_settings(self, key: str, val: int | float | str):
if key in self.settings.intData:
# 設定前処理
val = cast(int, val)
if key == "modelSlotIndex":
if val < 0:
return True
val = val % 1000 # Quick hack for same slot is selected
if (
self.settings.modelSlots[val].modelFile is None
or self.settings.modelSlots[val].modelFile == ""
):
print("[Voice Changer] slot does not have model.")
return True
self.prepareModel(val)
# 設定
setattr(self.settings, key, val)
if key == "gpu":
self.deviceManager.setForceTensor(False)
self.prepareModel(self.settings.modelSlotIndex)
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
if key == "f0Detector" and self.pipeline is not None:
pitchExtractor = PitchExtractorManager.getPitchExtractor(
self.settings.f0Detector
)
self.pipeline.setPitchExtractor(pitchExtractor)
else:
return False
return True
def prepareModel(self, slot: int):
if slot < 0:
print("[Voice Changer] Prepare Model of slot skip:", slot)
return self.get_info()
modelSlot = self.settings.modelSlots[slot]
print("[Voice Changer] Prepare Model of slot:", slot)
# pipelineの生成
self.next_pipeline = createPipeline(
modelSlot, self.settings.gpu, self.settings.f0Detector
)
# その他の設定
self.next_trans = modelSlot.defaultTune
self.next_index_ratio = modelSlot.defaultIndexRatio
self.next_protect = modelSlot.defaultProtect
self.next_samplingRate = modelSlot.samplingRate
self.next_framework = "ONNX" if modelSlot.isONNX else "PyTorch"
# self.needSwitch = True
print("[Voice Changer] Prepare done.")
self.switchModel(slot)
return self.get_info()
def switchModel(self, slot: int):
print("[Voice Changer] Switching model..")
self.pipeline = self.next_pipeline
self.settings.tran = self.next_trans
self.settings.indexRatio = self.next_index_ratio
self.settings.protect = self.next_protect
self.settings.modelSamplingRate = self.next_samplingRate
self.settings.framework = self.next_framework
# self.currentSlot = self.settings.modelSlotIndex # prepareModelから呼ばれるということはupdate_settingsの中で呼ばれるということなので、まだmodelSlotIndexは更新されていない
self.currentSlot = slot
print(
"[Voice Changer] Switching model..done",
)
def get_info(self):
data = asdict(self.settings)
if self.pipeline is not None:
pipelineInfo = self.pipeline.getPipelineInfo()
data["pipelineInfo"] = pipelineInfo
return data
def get_processing_sampling_rate(self):
return self.settings.modelSamplingRate
def generate_input(
self,
newData: AudioInOut,
inputSize: int,
crossfadeSize: int,
solaSearchFrame: int = 0,
):
newData = (
newData.astype(np.float32) / 32768.0
) # RVCのモデルのサンプリングレートで入ってきている。extraDataLength, Crossfade等も同じSRで処理(★1)
if self.audio_buffer is not None:
# 過去のデータに連結
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0)
else:
self.audio_buffer = newData
convertSize = (
inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize
)
if convertSize % 128 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
convertSize = convertSize + (128 - (convertSize % 128))
# バッファがたまっていない場合はzeroで補う
if self.audio_buffer.shape[0] < convertSize:
self.audio_buffer = np.concatenate(
[np.zeros([convertSize]), self.audio_buffer]
)
convertOffset = -1 * convertSize
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
if self.pipeline is not None:
device = self.pipeline.device
else:
device = torch.device("cpu")
audio_buffer = torch.from_numpy(self.audio_buffer).to(
device=device, dtype=torch.float32
)
# 出力部分だけ切り出して音量を確認。(TODO:段階的消音にする)
cropOffset = -1 * (inputSize + crossfadeSize)
cropEnd = -1 * (crossfadeSize)
crop = audio_buffer[cropOffset:cropEnd]
vol = torch.sqrt(torch.square(crop).mean()).detach().cpu().numpy()
vol = max(vol, self.prevVol * 0.0)
self.prevVol = vol
return (audio_buffer, convertSize, vol)
def inference(self, data):
if self.settings.modelSlotIndex < 0:
print(
"[Voice Changer] wait for loading model...",
self.settings.modelSlotIndex,
self.currentSlot,
)
raise NoModeLoadedException("model_common")
# if self.needSwitch:
# print(
# f"[Voice Changer] Switch model {self.currentSlot} -> {self.settings.modelSlotIndex}"
# )
# self.switchModel()
# self.needSwitch = False
# half = self.deviceManager.halfPrecisionAvailable(self.settings.gpu)
half = self.pipeline.isHalf
audio = data[0]
convertSize = data[1]
vol = data[2]
if vol < self.settings.silentThreshold:
return np.zeros(convertSize).astype(np.int16)
audio = torchaudio.functional.resample(
audio, self.settings.modelSamplingRate, 16000, rolloff=0.99
)
repeat = 3 if half else 1
repeat *= self.settings.rvcQuality # 0 or 3
sid = 0
f0_up_key = self.settings.tran
index_rate = self.settings.indexRatio
protect = self.settings.protect
if_f0 = 1 if self.settings.modelSlots[self.currentSlot].f0 else 0
embOutputLayer = self.settings.modelSlots[self.currentSlot].embOutputLayer
useFinalProj = self.settings.modelSlots[self.currentSlot].useFinalProj
try:
audio_out = self.pipeline.exec(
sid,
audio,
f0_up_key,
index_rate,
if_f0,
self.settings.extraConvertSize
/ self.settings.modelSamplingRate, # extaraDataSizeの秒数。RVCのモデルのサンプリングレートで処理(★1)。
embOutputLayer,
useFinalProj,
repeat,
protect,
)
result = audio_out.detach().cpu().numpy() * np.sqrt(vol)
return result
except DeviceCannotSupportHalfPrecisionException as e:
print(
"[Device Manager] Device cannot support half precision. Fallback to float...."
)
self.deviceManager.setForceTensor(True)
self.prepareModel(self.settings.modelSlotIndex)
raise e
return
def __del__(self):
del self.pipeline
# print("---------- REMOVING ---------------")
remove_path = os.path.join("RVC")
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
for key in list(sys.modules):
val = sys.modules.get(key)
try:
file_path = val.__file__
if file_path.find("RVC" + os.path.sep) >= 0:
# print("remove", key, file_path)
sys.modules.pop(key)
except Exception: # type:ignore
# print(e)
pass
def export2onnx(self):
modelSlot = self.settings.modelSlots[self.settings.modelSlotIndex]
if modelSlot.isONNX:
print("[Voice Changer] export2onnx, No pyTorch filepath.")
return {"status": "ng", "path": ""}
output_file_simple = export2onnx(self.settings.gpu, modelSlot)
return {
"status": "ok",
"path": f"/tmp/{output_file_simple}",
"filename": output_file_simple,
}
def merge_models(self, request: str):
print("[Voice Changer] MergeRequest:", request)
req: MergeModelRequest = MergeModelRequest.from_json(request)
merged = merge_model(req)
targetSlot = 0
if req.slot < 0:
targetSlot = len(self.settings.modelSlots) - 1
else:
targetSlot = req.slot
# いったんは、アップロードフォルダに格納する。(歴史的経緯)
# 後続のloadmodelを呼び出すことで永続化モデルフォルダに移動させられる。
storeDir = os.path.join(UPLOAD_DIR, f"{targetSlot}")
print("[Voice Changer] store merged model to:", storeDir)
os.makedirs(storeDir, exist_ok=True)
storeFile = os.path.join(storeDir, "merged.pth")
torch.save(merged, storeFile)
# loadmodelを呼び出して永続化モデルフォルダに移動させる。
params = {
"defaultTune": req.defaultTune,
"defaultIndexRatio": req.defaultIndexRatio,
"defaultProtect": req.defaultProtect,
"sampleId": "",
"files": {"rvcModel": storeFile},
}
props: LoadModelParams = LoadModelParams(
slot=targetSlot, isHalf=True, params=params
)
self.loadModel(props)
self.prepareModel(targetSlot)
self.settings.modelSlotIndex = targetSlot
self.currentSlot = self.settings.modelSlotIndex
def update_model_default(self):
print("[Voice Changer] UPDATE MODEL DEFAULT!!")
slotDir = os.path.join(
self.params.model_dir, RVC_MODEL_DIRNAME, str(self.currentSlot)
)
params = json.load(
open(os.path.join(slotDir, "params.json"), "r", encoding="utf-8")
)
params["defaultTune"] = self.settings.tran
params["defaultIndexRatio"] = self.settings.indexRatio
params["defaultProtect"] = self.settings.protect
json.dump(params, open(os.path.join(slotDir, "params.json"), "w"))
self.loadSlots()