mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-24 05:55:01 +03:00
353 lines
13 KiB
Python
353 lines
13 KiB
Python
import sys
|
|
import os
|
|
if sys.platform.startswith('darwin'):
|
|
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
|
|
if len(baseDir) != 1:
|
|
print("baseDir should be only one ", baseDir)
|
|
sys.exit()
|
|
modulePath = os.path.join(baseDir[0], "so-vits-svc-40v2")
|
|
sys.path.append(modulePath)
|
|
else:
|
|
sys.path.append("so-vits-svc-40v2")
|
|
|
|
import io
|
|
from dataclasses import dataclass, asdict, field
|
|
from functools import reduce
|
|
import numpy as np
|
|
import torch
|
|
import onnxruntime
|
|
import pyworld as pw
|
|
|
|
from models import SynthesizerTrn
|
|
import cluster
|
|
import utils
|
|
from fairseq import checkpoint_utils
|
|
import librosa
|
|
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
|
|
|
|
|
@dataclass
|
|
class SoVitsSvc40v2Settings():
|
|
gpu: int = 0
|
|
dstId: int = 0
|
|
|
|
f0Detector: str = "dio" # dio or harvest
|
|
tran: int = 20
|
|
noiceScale: float = 0.3
|
|
predictF0: int = 0 # 0:False, 1:True
|
|
silentThreshold: float = 0.00001
|
|
extraConvertSize: int = 1024 * 32
|
|
clusterInferRatio: float = 0.1
|
|
|
|
framework: str = "PyTorch" # PyTorch or ONNX
|
|
pyTorchModelFile: str = ""
|
|
onnxModelFile: str = ""
|
|
configFile: str = ""
|
|
|
|
speakers: dict[str, int] = field(
|
|
default_factory=lambda: {}
|
|
)
|
|
|
|
# ↓mutableな物だけ列挙
|
|
intData = ["gpu", "dstId", "tran", "predictF0", "extraConvertSize"]
|
|
floatData = ["noiceScale", "silentThreshold", "clusterInferRatio"]
|
|
strData = ["framework", "f0Detector"]
|
|
|
|
|
|
class SoVitsSvc40v2:
|
|
def __init__(self, params):
|
|
self.settings = SoVitsSvc40v2Settings()
|
|
self.net_g = None
|
|
self.onnx_session = None
|
|
|
|
self.raw_path = io.BytesIO()
|
|
self.gpu_num = torch.cuda.device_count()
|
|
self.prevVol = 0
|
|
self.params = params
|
|
print("so-vits-svc 40v2 initialization:", params)
|
|
|
|
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None, clusterTorchModel: str = None):
|
|
|
|
self.settings.configFile = config
|
|
self.hps = utils.get_hparams_from_file(config)
|
|
self.settings.speakers = self.hps.spk
|
|
|
|
# hubert model
|
|
try:
|
|
# if sys.platform.startswith('darwin'):
|
|
# vec_path = os.path.join(sys._MEIPASS, "hubert/checkpoint_best_legacy_500.pt")
|
|
# else:
|
|
# vec_path = "hubert/checkpoint_best_legacy_500.pt"
|
|
vec_path = self.params["hubert"]
|
|
|
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
|
[vec_path],
|
|
suffix="",
|
|
)
|
|
model = models[0]
|
|
model.eval()
|
|
self.hubert_model = model.cpu()
|
|
except Exception as e:
|
|
print("EXCEPTION during loading hubert/contentvec model", e)
|
|
|
|
# cluster
|
|
try:
|
|
if clusterTorchModel != None and os.path.exists(clusterTorchModel):
|
|
self.cluster_model = cluster.get_cluster_model(clusterTorchModel)
|
|
else:
|
|
self.cluster_model = None
|
|
except Exception as e:
|
|
print("EXCEPTION during loading cluster model ", e)
|
|
|
|
if pyTorch_model_file != None:
|
|
self.settings.pyTorchModelFile = pyTorch_model_file
|
|
if onnx_model_file:
|
|
self.settings.onnxModelFile = onnx_model_file
|
|
|
|
# PyTorchモデル生成
|
|
if pyTorch_model_file != None:
|
|
self.net_g = SynthesizerTrn(
|
|
self.hps
|
|
)
|
|
self.net_g.eval()
|
|
utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
|
|
|
|
# ONNXモデル生成
|
|
if onnx_model_file != None:
|
|
ort_options = onnxruntime.SessionOptions()
|
|
ort_options.intra_op_num_threads = 8
|
|
self.onnx_session = onnxruntime.InferenceSession(
|
|
onnx_model_file,
|
|
providers=providers
|
|
)
|
|
input_info = self.onnx_session.get_inputs()
|
|
return self.get_info()
|
|
|
|
def update_setteings(self, key: str, val: any):
|
|
if key == "onnxExecutionProvider" and self.onnx_session != None:
|
|
if val == "CUDAExecutionProvider":
|
|
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
|
|
self.settings.gpu = 0
|
|
provider_options = [{'device_id': self.settings.gpu}]
|
|
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
|
|
else:
|
|
self.onnx_session.set_providers(providers=[val])
|
|
elif key in self.settings.intData:
|
|
setattr(self.settings, key, int(val))
|
|
if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None:
|
|
providers = self.onnx_session.get_providers()
|
|
print("Providers:", providers)
|
|
if "CUDAExecutionProvider" in providers:
|
|
provider_options = [{'device_id': self.settings.gpu}]
|
|
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
|
|
elif key in self.settings.floatData:
|
|
setattr(self.settings, key, float(val))
|
|
elif key in self.settings.strData:
|
|
setattr(self.settings, key, str(val))
|
|
else:
|
|
return False
|
|
|
|
return True
|
|
|
|
def get_info(self):
|
|
data = asdict(self.settings)
|
|
|
|
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session != None else []
|
|
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
|
for f in files:
|
|
if data[f] != None and os.path.exists(data[f]):
|
|
data[f] = os.path.basename(data[f])
|
|
else:
|
|
data[f] = ""
|
|
|
|
return data
|
|
|
|
def get_processing_sampling_rate(self):
|
|
return self.hps.data.sampling_rate
|
|
|
|
def get_unit_f0(self, audio_buffer, tran):
|
|
wav_44k = audio_buffer
|
|
# f0 = utils.compute_f0_parselmouth(wav, sampling_rate=self.target_sample, hop_length=self.hop_size)
|
|
# f0 = utils.compute_f0_dio(wav_44k, sampling_rate=self.hps.data.sampling_rate, hop_length=self.hps.data.hop_length)
|
|
if self.settings.f0Detector == "dio":
|
|
f0 = compute_f0_dio(wav_44k, sampling_rate=self.hps.data.sampling_rate, hop_length=self.hps.data.hop_length)
|
|
else:
|
|
f0 = compute_f0_harvest(wav_44k, sampling_rate=self.hps.data.sampling_rate, hop_length=self.hps.data.hop_length)
|
|
|
|
if wav_44k.shape[0] % self.hps.data.hop_length != 0:
|
|
print(f" !!! !!! !!! wav size not multiple of hopsize: {wav_44k.shape[0] / self.hps.data.hop_length}")
|
|
|
|
f0, uv = utils.interpolate_f0(f0)
|
|
f0 = torch.FloatTensor(f0)
|
|
uv = torch.FloatTensor(uv)
|
|
f0 = f0 * 2 ** (tran / 12)
|
|
f0 = f0.unsqueeze(0)
|
|
uv = uv.unsqueeze(0)
|
|
|
|
# wav16k = librosa.resample(audio_buffer, orig_sr=24000, target_sr=16000)
|
|
wav16k = librosa.resample(audio_buffer, orig_sr=self.hps.data.sampling_rate, target_sr=16000)
|
|
wav16k = torch.from_numpy(wav16k)
|
|
|
|
if (self.settings.gpu < 0 or self.gpu_num == 0) or self.settings.framework == "ONNX":
|
|
dev = torch.device("cpu")
|
|
else:
|
|
dev = torch.device("cuda", index=self.settings.gpu)
|
|
|
|
self.hubert_model = self.hubert_model.to(dev)
|
|
wav16k = wav16k.to(dev)
|
|
uv = uv.to(dev)
|
|
f0 = f0.to(dev)
|
|
|
|
c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k)
|
|
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
|
|
|
|
if self.settings.clusterInferRatio != 0 and hasattr(self, "cluster_model") and self.cluster_model != None:
|
|
speaker = [key for key, value in self.settings.speakers.items() if value == self.settings.dstId]
|
|
if len(speaker) != 1:
|
|
print("not only one speaker found.", speaker)
|
|
else:
|
|
cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker[0]).T
|
|
# cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, self.settings.dstId).T
|
|
cluster_c = torch.FloatTensor(cluster_c).to(dev)
|
|
# print("cluster DEVICE", cluster_c.device, c.device)
|
|
c = self.settings.clusterInferRatio * cluster_c + (1 - self.settings.clusterInferRatio) * c
|
|
|
|
c = c.unsqueeze(0)
|
|
return c, f0, uv
|
|
|
|
def generate_input(self, newData: any, inputSize: int, crossfadeSize: int):
|
|
newData = newData.astype(np.float32) / self.hps.data.max_wav_value
|
|
|
|
if hasattr(self, "audio_buffer"):
|
|
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
|
|
else:
|
|
self.audio_buffer = newData
|
|
|
|
convertSize = inputSize + crossfadeSize + self.settings.extraConvertSize
|
|
|
|
if convertSize % self.hps.data.hop_length != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
|
convertSize = convertSize + (self.hps.data.hop_length - (convertSize % self.hps.data.hop_length))
|
|
|
|
self.audio_buffer = self.audio_buffer[-1 * convertSize:] # 変換対象の部分だけ抽出
|
|
|
|
crop = self.audio_buffer[-1 * (inputSize + crossfadeSize):-1 * (crossfadeSize)]
|
|
|
|
rms = np.sqrt(np.square(crop).mean(axis=0))
|
|
vol = max(rms, self.prevVol * 0.0)
|
|
self.prevVol = vol
|
|
|
|
c, f0, uv = self.get_unit_f0(self.audio_buffer, self.settings.tran)
|
|
return (c, f0, uv, convertSize, vol)
|
|
|
|
def _onnx_inference(self, data):
|
|
if hasattr(self, "onnx_session") == False or self.onnx_session == None:
|
|
print("[Voice Changer] No onnx session.")
|
|
return np.zeros(1).astype(np.int16)
|
|
|
|
convertSize = data[3]
|
|
vol = data[4]
|
|
data = (data[0], data[1], data[2],)
|
|
|
|
if vol < self.settings.silentThreshold:
|
|
return np.zeros(convertSize).astype(np.int16)
|
|
|
|
c, f0, uv = [x.numpy() for x in data]
|
|
audio1 = self.onnx_session.run(
|
|
["audio"],
|
|
{
|
|
"c": c,
|
|
"f0": f0,
|
|
"g": np.array([self.settings.dstId]).astype(np.int64),
|
|
"uv": np.array([self.settings.dstId]).astype(np.int64),
|
|
"predict_f0": np.array([self.settings.dstId]).astype(np.int64),
|
|
"noice_scale": np.array([self.settings.dstId]).astype(np.int64),
|
|
|
|
|
|
})[0][0, 0] * self.hps.data.max_wav_value
|
|
|
|
audio1 = audio1 * vol
|
|
|
|
result = audio1
|
|
|
|
return result
|
|
|
|
pass
|
|
|
|
def _pyTorch_inference(self, data):
|
|
if hasattr(self, "net_g") == False or self.net_g == None:
|
|
print("[Voice Changer] No pyTorch session.")
|
|
return np.zeros(1).astype(np.int16)
|
|
|
|
if self.settings.gpu < 0 or self.gpu_num == 0:
|
|
dev = torch.device("cpu")
|
|
else:
|
|
dev = torch.device("cuda", index=self.settings.gpu)
|
|
|
|
convertSize = data[3]
|
|
vol = data[4]
|
|
data = (data[0], data[1], data[2],)
|
|
|
|
if vol < self.settings.silentThreshold:
|
|
return np.zeros(convertSize).astype(np.int16)
|
|
|
|
with torch.no_grad():
|
|
c, f0, uv = [x.to(dev)for x in data]
|
|
sid_target = torch.LongTensor([self.settings.dstId]).to(dev)
|
|
self.net_g.to(dev)
|
|
# audio1 = self.net_g.infer(c, f0=f0, g=sid_target, uv=uv, predict_f0=True, noice_scale=0.1)[0][0, 0].data.float()
|
|
predict_f0_flag = True if self.settings.predictF0 == 1 else False
|
|
audio1 = self.net_g.infer(c, f0=f0, g=sid_target, uv=uv, predict_f0=predict_f0_flag,
|
|
noice_scale=self.settings.noiceScale)[0][0, 0].data.float()
|
|
audio1 = audio1 * self.hps.data.max_wav_value
|
|
|
|
audio1 = audio1 * vol
|
|
|
|
result = audio1.float().cpu().numpy()
|
|
|
|
# result = infer_tool.pad_array(result, length)
|
|
return result
|
|
|
|
def inference(self, data):
|
|
if self.settings.framework == "ONNX":
|
|
audio = self._onnx_inference(data)
|
|
else:
|
|
audio = self._pyTorch_inference(data)
|
|
return audio
|
|
|
|
def destroy(self):
|
|
del self.net_g
|
|
del self.onnx_session
|
|
|
|
|
|
def resize_f0(x, target_len):
|
|
source = np.array(x)
|
|
source[source < 0.001] = np.nan
|
|
target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)), source)
|
|
res = np.nan_to_num(target)
|
|
return res
|
|
|
|
|
|
def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
|
|
if p_len is None:
|
|
p_len = wav_numpy.shape[0] // hop_length
|
|
f0, t = pw.dio(
|
|
wav_numpy.astype(np.double),
|
|
fs=sampling_rate,
|
|
f0_ceil=800,
|
|
frame_period=1000 * hop_length / sampling_rate,
|
|
)
|
|
f0 = pw.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
|
|
for index, pitch in enumerate(f0):
|
|
f0[index] = round(pitch, 1)
|
|
return resize_f0(f0, p_len)
|
|
|
|
|
|
def compute_f0_harvest(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
|
|
if p_len is None:
|
|
p_len = wav_numpy.shape[0] // hop_length
|
|
f0, t = pw.harvest(wav_numpy.astype(np.double), fs=sampling_rate, frame_period=5.5, f0_floor=71.0, f0_ceil=1000.0)
|
|
|
|
for index, pitch in enumerate(f0):
|
|
f0[index] = round(pitch, 1)
|
|
return resize_f0(f0, p_len)
|