mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-24 22:15:02 +03:00
218 lines
8.2 KiB
Python
218 lines
8.2 KiB
Python
from typing import Any
|
||
import torch
|
||
import torch.nn.functional as F
|
||
from torch.cuda.amp import autocast
|
||
from Exceptions import (
|
||
DeviceCannotSupportHalfPrecisionException,
|
||
DeviceChangingException,
|
||
HalfPrecisionChangingException,
|
||
NotEnoughDataExtimateF0,
|
||
)
|
||
from voice_changer.DiffusionSVC.inferencer.Inferencer import Inferencer
|
||
from voice_changer.DiffusionSVC.pitchExtractor.PitchExtractor import PitchExtractor
|
||
|
||
from voice_changer.RVC.embedder.Embedder import Embedder
|
||
|
||
from voice_changer.common.VolumeExtractor import VolumeExtractor
|
||
from torchaudio.transforms import Resample
|
||
|
||
from voice_changer.utils.Timer import Timer
|
||
|
||
|
||
class Pipeline(object):
|
||
embedder: Embedder
|
||
inferencer: Inferencer
|
||
pitchExtractor: PitchExtractor
|
||
|
||
index: Any | None
|
||
big_npy: Any | None
|
||
# feature: Any | None
|
||
|
||
targetSR: int
|
||
device: torch.device
|
||
isHalf: bool
|
||
|
||
def __init__(
|
||
self,
|
||
embedder: Embedder,
|
||
inferencer: Inferencer,
|
||
pitchExtractor: PitchExtractor,
|
||
# index: Any | None,
|
||
targetSR,
|
||
device,
|
||
isHalf,
|
||
resamplerIn: Resample,
|
||
resamplerOut: Resample
|
||
):
|
||
self.inferencer = inferencer
|
||
inferencer_block_size, inferencer_sampling_rate = inferencer.getConfig()
|
||
self.hop_size = inferencer_block_size * 16000 / inferencer_sampling_rate # 16000はオーディオのサンプルレート。16Kで処理
|
||
self.inferencer_block_size = inferencer_block_size
|
||
self.inferencer_sampling_rate = inferencer_sampling_rate
|
||
|
||
self.volumeExtractor = VolumeExtractor(self.hop_size)
|
||
self.embedder = embedder
|
||
self.pitchExtractor = pitchExtractor
|
||
|
||
self.resamplerIn = resamplerIn
|
||
self.resamplerOut = resamplerOut
|
||
|
||
print("VOLUME EXTRACTOR", self.volumeExtractor)
|
||
print("GENERATE INFERENCER", self.inferencer)
|
||
print("GENERATE EMBEDDER", self.embedder)
|
||
print("GENERATE PITCH EXTRACTOR", self.pitchExtractor)
|
||
|
||
self.targetSR = targetSR
|
||
self.device = device
|
||
self.isHalf = False
|
||
|
||
def getPipelineInfo(self):
|
||
volumeExtractorInfo = self.volumeExtractor.getVolumeExtractorInfo()
|
||
inferencerInfo = self.inferencer.getInferencerInfo() if self.inferencer else {}
|
||
embedderInfo = self.embedder.getEmbedderInfo()
|
||
pitchExtractorInfo = self.pitchExtractor.getPitchExtractorInfo()
|
||
return {"volumeExtractor": volumeExtractorInfo, "inferencer": inferencerInfo, "embedder": embedderInfo, "pitchExtractor": pitchExtractorInfo, "isHalf": self.isHalf}
|
||
|
||
def setPitchExtractor(self, pitchExtractor: PitchExtractor):
|
||
self.pitchExtractor = pitchExtractor
|
||
|
||
@torch.no_grad()
|
||
def extract_volume_and_mask(self, audio: torch.Tensor, threshold: float):
|
||
'''
|
||
with Timer("[VolumeExt np]") as t:
|
||
for i in range(100):
|
||
volume = self.volumeExtractor.extract(audio)
|
||
time_np = t.secs
|
||
with Timer("[VolumeExt pt]") as t:
|
||
for i in range(100):
|
||
volume_t = self.volumeExtractor.extract_t(audio)
|
||
time_pt = t.secs
|
||
|
||
print("[Volume np]:", volume)
|
||
print("[Volume pt]:", volume_t)
|
||
print("[Perform]:", time_np, time_pt)
|
||
# -> [Perform]: 0.030178070068359375 0.005780220031738281 (RTX4090)
|
||
# -> [Perform]: 0.029046058654785156 0.0025115013122558594 (CPU i9 13900KF)
|
||
# ---> これくらいの処理ならCPU上のTorchでやった方が早い?
|
||
'''
|
||
volume_t = self.volumeExtractor.extract_t(audio)
|
||
mask = self.volumeExtractor.get_mask_from_volume_t(volume_t, self.inferencer_block_size, threshold=threshold)
|
||
volume = volume_t.unsqueeze(-1).unsqueeze(0)
|
||
return volume, mask
|
||
|
||
def exec(
|
||
self,
|
||
sid,
|
||
audio, # torch.tensor [n]
|
||
sr,
|
||
pitchf, # np.array [m]
|
||
feature, # np.array [m, feat]
|
||
f0_up_key,
|
||
k_step,
|
||
infer_speedup,
|
||
silence_front,
|
||
embOutputLayer,
|
||
useFinalProj,
|
||
protect=0.5
|
||
):
|
||
# print("---------- pipe line --------------------")
|
||
with Timer("pre-process") as t:
|
||
audio_t = torch.from_numpy(audio).float().unsqueeze(0).to(self.device)
|
||
audio16k = self.resamplerIn(audio_t)
|
||
volume, mask = self.extract_volume_and_mask(audio16k, threshold=-60.0)
|
||
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
||
n_frames = int(audio16k.size(-1) // self.hop_size + 1)
|
||
# print("[Timer::1: ]", t.secs)
|
||
|
||
with Timer("pre-process") as t:
|
||
# ピッチ検出
|
||
try:
|
||
# pitch = self.pitchExtractor.extract(
|
||
# audio16k.squeeze(),
|
||
# pitchf,
|
||
# f0_up_key,
|
||
# int(self.hop_size), # 処理のwindowサイズ (44100における512)
|
||
# silence_front=silence_front,
|
||
# )
|
||
pitch = self.pitchExtractor.extract(
|
||
audio,
|
||
sr,
|
||
self.inferencer_block_size,
|
||
self.inferencer_sampling_rate,
|
||
pitchf,
|
||
f0_up_key,
|
||
silence_front=silence_front,
|
||
)
|
||
pitch = torch.tensor(pitch[-n_frames:], device=self.device, dtype=torch.float).unsqueeze(0).long()
|
||
except IndexError as e: # NOQA
|
||
raise NotEnoughDataExtimateF0()
|
||
|
||
# tensor型調整
|
||
feats = audio16k.squeeze()
|
||
if feats.dim() == 2: # double channels
|
||
feats = feats.mean(-1)
|
||
feats = feats.view(1, -1)
|
||
# print("[Timer::2: ]", t.secs)
|
||
|
||
with Timer("pre-process") as t:
|
||
|
||
# embedding
|
||
with autocast(enabled=self.isHalf):
|
||
try:
|
||
feats = self.embedder.extractFeatures(feats, embOutputLayer, useFinalProj)
|
||
if torch.isnan(feats).all():
|
||
raise DeviceCannotSupportHalfPrecisionException()
|
||
except RuntimeError as e:
|
||
if "HALF" in e.__str__().upper():
|
||
raise HalfPrecisionChangingException()
|
||
elif "same device" in e.__str__():
|
||
raise DeviceChangingException()
|
||
else:
|
||
raise e
|
||
feats = F.interpolate(feats.permute(0, 2, 1), size=int(n_frames), mode='nearest').permute(0, 2, 1)
|
||
# print("[Timer::3: ]", t.secs)
|
||
|
||
with Timer("pre-process") as t:
|
||
# 推論実行
|
||
try:
|
||
with torch.no_grad():
|
||
with autocast(enabled=self.isHalf):
|
||
audio1 = (
|
||
torch.clip(
|
||
self.inferencer.infer(
|
||
audio16k,
|
||
feats,
|
||
pitch.unsqueeze(-1),
|
||
volume,
|
||
mask,
|
||
sid,
|
||
k_step,
|
||
infer_speedup,
|
||
silence_front=silence_front
|
||
).to(dtype=torch.float32),
|
||
-1.0,
|
||
1.0,
|
||
)
|
||
* 32767.5
|
||
).data.to(dtype=torch.int16)
|
||
except RuntimeError as e:
|
||
if "HALF" in e.__str__().upper():
|
||
print("11", e)
|
||
raise HalfPrecisionChangingException()
|
||
else:
|
||
raise e
|
||
# print("[Timer::4: ]", t.secs)
|
||
|
||
with Timer("pre-process") as t: # NOQA
|
||
feats_buffer = feats.squeeze(0).detach().cpu()
|
||
if pitch is not None:
|
||
pitch_buffer = pitch.squeeze(0).detach().cpu()
|
||
else:
|
||
pitch_buffer = None
|
||
|
||
del pitch, pitchf, feats, sid
|
||
torch.cuda.empty_cache()
|
||
audio1 = self.resamplerOut(audio1.float())
|
||
# print("[Timer::5: ]", t.secs)
|
||
return audio1, pitch_buffer, feats_buffer
|