voice-changer/server/voice_changer/DiffusionSVC/pipeline/Pipeline.py
2023-07-23 07:20:48 +09:00

217 lines
8.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from typing import Any
import torch
import torch.nn.functional as F
from torch.cuda.amp import autocast
from Exceptions import (
DeviceCannotSupportHalfPrecisionException,
DeviceChangingException,
HalfPrecisionChangingException,
NotEnoughDataExtimateF0,
)
from voice_changer.DiffusionSVC.inferencer.Inferencer import Inferencer
from voice_changer.DiffusionSVC.pitchExtractor.PitchExtractor import PitchExtractor
from voice_changer.RVC.embedder.Embedder import Embedder
from voice_changer.common.VolumeExtractor import VolumeExtractor
from torchaudio.transforms import Resample
from voice_changer.utils.Timer import Timer
class Pipeline(object):
embedder: Embedder
inferencer: Inferencer
pitchExtractor: PitchExtractor
index: Any | None
big_npy: Any | None
# feature: Any | None
targetSR: int
device: torch.device
isHalf: bool
def __init__(
self,
embedder: Embedder,
inferencer: Inferencer,
pitchExtractor: PitchExtractor,
# index: Any | None,
targetSR,
device,
isHalf,
resamplerIn: Resample,
resamplerOut: Resample
):
self.inferencer = inferencer
inferencer_block_size, inferencer_sampling_rate = inferencer.getConfig()
self.hop_size = inferencer_block_size * 16000 / inferencer_sampling_rate # 16000はオーディオのサンプルレート。16Kで処理
self.inferencer_block_size = inferencer_block_size
self.inferencer_sampling_rate = inferencer_sampling_rate
self.volumeExtractor = VolumeExtractor(self.hop_size)
self.embedder = embedder
self.pitchExtractor = pitchExtractor
self.resamplerIn = resamplerIn
self.resamplerOut = resamplerOut
print("VOLUME EXTRACTOR", self.volumeExtractor)
print("GENERATE INFERENCER", self.inferencer)
print("GENERATE EMBEDDER", self.embedder)
print("GENERATE PITCH EXTRACTOR", self.pitchExtractor)
self.targetSR = targetSR
self.device = device
self.isHalf = False
def getPipelineInfo(self):
volumeExtractorInfo = self.volumeExtractor.getVolumeExtractorInfo()
inferencerInfo = self.inferencer.getInferencerInfo() if self.inferencer else {}
embedderInfo = self.embedder.getEmbedderInfo()
pitchExtractorInfo = self.pitchExtractor.getPitchExtractorInfo()
return {"volumeExtractor": volumeExtractorInfo, "inferencer": inferencerInfo, "embedder": embedderInfo, "pitchExtractor": pitchExtractorInfo, "isHalf": self.isHalf}
def setPitchExtractor(self, pitchExtractor: PitchExtractor):
self.pitchExtractor = pitchExtractor
@torch.no_grad()
def extract_volume_and_mask(self, audio: torch.Tensor, threshold: float):
'''
with Timer("[VolumeExt np]") as t:
for i in range(100):
volume = self.volumeExtractor.extract(audio)
time_np = t.secs
with Timer("[VolumeExt pt]") as t:
for i in range(100):
volume_t = self.volumeExtractor.extract_t(audio)
time_pt = t.secs
print("[Volume np]:", volume)
print("[Volume pt]:", volume_t)
print("[Perform]:", time_np, time_pt)
# -> [Perform]: 0.030178070068359375 0.005780220031738281 (RTX4090)
# -> [Perform]: 0.029046058654785156 0.0025115013122558594 (CPU i9 13900KF)
# ---> これくらいの処理ならCPU上のTorchでやった方が早い
'''
volume_t = self.volumeExtractor.extract_t(audio)
mask = self.volumeExtractor.get_mask_from_volume_t(volume_t, self.inferencer_block_size, threshold=threshold)
volume = volume_t.unsqueeze(-1).unsqueeze(0)
return volume, mask
def exec(
self,
sid,
audio, # torch.tensor [n]
sr,
pitchf, # np.array [m]
feature, # np.array [m, feat]
f0_up_key,
k_step,
infer_speedup,
silence_front,
embOutputLayer,
useFinalProj,
protect=0.5
):
# print("---------- pipe line --------------------")
with Timer("pre-process") as t:
audio_t = torch.from_numpy(audio).float().unsqueeze(0).to(self.device)
audio16k = self.resamplerIn(audio_t)
volume, mask = self.extract_volume_and_mask(audio16k, threshold=-60.0)
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
n_frames = int(audio16k.size(-1) // self.hop_size + 1)
# print("[Timer::1: ]", t.secs)
with Timer("pre-process") as t:
# ピッチ検出
try:
# pitch = self.pitchExtractor.extract(
# audio16k.squeeze(),
# pitchf,
# f0_up_key,
# int(self.hop_size), # 処理のwindowサイズ (44100における512)
# silence_front=silence_front,
# )
pitch = self.pitchExtractor.extract(
audio,
sr,
self.inferencer_block_size,
self.inferencer_sampling_rate,
pitchf,
f0_up_key,
silence_front=silence_front,
)
pitch = torch.tensor(pitch[-n_frames:], device=self.device, dtype=torch.float).unsqueeze(0).long()
except IndexError as e: # NOQA
raise NotEnoughDataExtimateF0()
# tensor型調整
feats = audio16k.squeeze()
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
feats = feats.view(1, -1)
# print("[Timer::2: ]", t.secs)
with Timer("pre-process") as t:
# embedding
with autocast(enabled=self.isHalf):
try:
feats = self.embedder.extractFeatures(feats, embOutputLayer, useFinalProj)
if torch.isnan(feats).all():
raise DeviceCannotSupportHalfPrecisionException()
except RuntimeError as e:
if "HALF" in e.__str__().upper():
raise HalfPrecisionChangingException()
elif "same device" in e.__str__():
raise DeviceChangingException()
else:
raise e
feats = F.interpolate(feats.permute(0, 2, 1), size=int(n_frames), mode='nearest').permute(0, 2, 1)
# print("[Timer::3: ]", t.secs)
with Timer("pre-process") as t:
# 推論実行
try:
with torch.no_grad():
with autocast(enabled=self.isHalf):
audio1 = (
torch.clip(
self.inferencer.infer(
audio16k,
feats,
pitch.unsqueeze(-1),
volume,
mask,
sid,
k_step,
infer_speedup,
silence_front=silence_front
).to(dtype=torch.float32),
-1.0,
1.0,
)
* 32767.5
).data.to(dtype=torch.int16)
except RuntimeError as e:
if "HALF" in e.__str__().upper():
print("11", e)
raise HalfPrecisionChangingException()
else:
raise e
# print("[Timer::4: ]", t.secs)
with Timer("pre-process") as t: # NOQA
feats_buffer = feats.squeeze(0).detach().cpu()
if pitch is not None:
pitch_buffer = pitch.squeeze(0).detach().cpu()
else:
pitch_buffer = None
del pitch, pitchf, feats, sid
audio1 = self.resamplerOut(audio1.float())
# print("[Timer::5: ]", t.secs)
return audio1, pitch_buffer, feats_buffer