mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-24 05:55:01 +03:00
58 lines
2.0 KiB
Python
58 lines
2.0 KiB
Python
import torchcrepe
|
|
import torch
|
|
import numpy as np
|
|
from const import PitchExtractorType
|
|
from voice_changer.DiffusionSVC.pitchExtractor.PitchExtractor import PitchExtractor
|
|
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
|
|
from voice_changer.utils.VoiceChangerModel import AudioInOut
|
|
|
|
|
|
class CrepePitchExtractor(PitchExtractor):
|
|
|
|
def __init__(self, gpu: int):
|
|
super().__init__()
|
|
self.pitchExtractorType: PitchExtractorType = "crepe"
|
|
self.f0_min = 50
|
|
self.f0_max = 1100
|
|
self.uv_interp = True
|
|
self.device = DeviceManager.get_instance().getDevice(gpu)
|
|
|
|
def extract(self, audio: AudioInOut, sr: int, block_size: int, model_sr: int, pitch, f0_up_key, silence_front=0):
|
|
hop_size = block_size * sr / model_sr
|
|
audio_t = torch.from_numpy(audio).float().unsqueeze(0).to(self.device)
|
|
|
|
offset_frame_number = silence_front * 16000
|
|
start_frame = int(offset_frame_number / hop_size) # frame
|
|
real_silence_front = start_frame * hop_size / 16000 # 秒
|
|
audio_t = audio_t[:, int(np.round(real_silence_front * 16000)):]
|
|
|
|
f0, pd = torchcrepe.predict(
|
|
audio_t,
|
|
sr,
|
|
hop_length=hop_size,
|
|
fmin=self.f0_min,
|
|
fmax=self.f0_max,
|
|
# model="tiny",
|
|
model="full",
|
|
batch_size=256,
|
|
decoder=torchcrepe.decode.weighted_argmax,
|
|
device=self.device,
|
|
return_periodicity=True,
|
|
)
|
|
f0 = torchcrepe.filter.median(f0, 3) # 本家だとmeanですが、harvestに合わせmedianフィルタ
|
|
pd = torchcrepe.filter.median(pd, 3)
|
|
f0[pd < 0.1] = 0
|
|
f0 = f0.squeeze()
|
|
pitch[-f0.shape[0]:] = f0.cpu()[:pitch.shape[0]]
|
|
f0 = pitch
|
|
|
|
if self.uv_interp:
|
|
uv = f0 == 0
|
|
if len(f0[~uv]) > 0:
|
|
f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv])
|
|
f0[f0 < self.f0_min] = self.f0_min
|
|
|
|
f0 = f0 * 2 ** (float(f0_up_key) / 12)
|
|
|
|
return f0
|