mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 21:45:00 +03:00
493 lines
19 KiB
Python
Executable File
493 lines
19 KiB
Python
Executable File
import time
|
||
import os
|
||
import random
|
||
import numpy as np
|
||
import torch
|
||
import torch.utils.data
|
||
import tqdm
|
||
|
||
import commons
|
||
from mel_processing import spectrogram_torch
|
||
from utils import load_wav_to_torch, load_filepaths_and_text
|
||
from text import text_to_sequence, cleaned_text_to_sequence
|
||
import struct
|
||
#add
|
||
from retry import retry
|
||
import random
|
||
import torchaudio
|
||
from scipy.io.wavfile import write
|
||
|
||
class TextAudioLoader(torch.utils.data.Dataset):
|
||
"""
|
||
1) loads audio, text pairs
|
||
2) normalizes text and converts them to sequences of integers
|
||
3) computes spectrograms from audio files.
|
||
"""
|
||
def __init__(self, audiopaths_and_text, hparams, use_test = True):
|
||
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
||
self.text_cleaners = hparams.text_cleaners
|
||
self.max_wav_value = hparams.max_wav_value
|
||
self.sampling_rate = hparams.sampling_rate
|
||
self.filter_length = hparams.filter_length
|
||
self.hop_length = hparams.hop_length
|
||
self.win_length = hparams.win_length
|
||
self.sampling_rate = hparams.sampling_rate
|
||
self.use_test = use_test
|
||
|
||
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
||
|
||
self.add_blank = hparams.add_blank
|
||
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
||
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
||
|
||
random.seed(1234)
|
||
random.shuffle(self.audiopaths_and_text)
|
||
self._filter()
|
||
|
||
|
||
def _filter(self):
|
||
"""
|
||
Filter text & store spec lengths
|
||
"""
|
||
# Store spectrogram lengths for Bucketing
|
||
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
||
# spec_length = wav_length // hop_length
|
||
|
||
audiopaths_and_text_new = []
|
||
lengths = []
|
||
for audiopath, text in self.audiopaths_and_text:
|
||
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
||
audiopaths_and_text_new.append([audiopath, text])
|
||
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
||
self.audiopaths_and_text = audiopaths_and_text_new
|
||
self.lengths = lengths
|
||
|
||
def get_audio_text_pair(self, audiopath_and_text):
|
||
# separate filename and text
|
||
audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
|
||
text = self.get_text(text)
|
||
if self.use_test != True:
|
||
text = torch.as_tensor("a")
|
||
spec, wav = self.get_audio(audiopath)
|
||
return (text, spec, wav)
|
||
|
||
def get_audio(self, filename):
|
||
audio, sampling_rate = load_wav_to_torch(filename)
|
||
if sampling_rate != self.sampling_rate:
|
||
raise ValueError("{} {} SR doesn't match target {} SR".format(
|
||
sampling_rate, self.sampling_rate))
|
||
audio_norm = audio / self.max_wav_value
|
||
audio_norm = audio_norm.unsqueeze(0)
|
||
spec_filename = filename.replace(".wav", ".spec.pt")
|
||
if os.path.exists(spec_filename):
|
||
spec = torch.load(spec_filename)
|
||
else:
|
||
spec = spectrogram_torch(audio_norm, self.filter_length,
|
||
self.sampling_rate, self.hop_length, self.win_length,
|
||
center=False)
|
||
spec = torch.squeeze(spec, 0)
|
||
torch.save(spec, spec_filename)
|
||
return spec, audio_norm
|
||
|
||
def get_text(self, text):
|
||
if self.cleaned_text:
|
||
text_norm = cleaned_text_to_sequence(text)
|
||
else:
|
||
text_norm = text_to_sequence(text, self.text_cleaners)
|
||
if self.add_blank:
|
||
text_norm = commons.intersperse(text_norm, 0)
|
||
text_norm = torch.LongTensor(text_norm)
|
||
return text_norm
|
||
|
||
def __getitem__(self, index):
|
||
return self.get_audio_text_pair(self.audiopaths_and_text[index])
|
||
|
||
def __len__(self):
|
||
return len(self.audiopaths_and_text)
|
||
|
||
|
||
class TextAudioCollate():
|
||
""" Zero-pads model inputs and targets
|
||
"""
|
||
def __init__(self, return_ids=False):
|
||
self.return_ids = return_ids
|
||
|
||
def __call__(self, batch):
|
||
"""Collate's training batch from normalized text and aduio
|
||
PARAMS
|
||
------
|
||
batch: [text_normalized, spec_normalized, wav_normalized]
|
||
"""
|
||
# Right zero-pad all one-hot text sequences to max input length
|
||
_, ids_sorted_decreasing = torch.sort(
|
||
torch.LongTensor([x[1].size(1) for x in batch]),
|
||
dim=0, descending=True)
|
||
|
||
max_text_len = max([len(x[0]) for x in batch])
|
||
max_spec_len = max([x[1].size(1) for x in batch])
|
||
max_wav_len = max([x[2].size(1) for x in batch])
|
||
|
||
text_lengths = torch.LongTensor(len(batch))
|
||
spec_lengths = torch.LongTensor(len(batch))
|
||
wav_lengths = torch.LongTensor(len(batch))
|
||
|
||
text_padded = torch.LongTensor(len(batch), max_text_len)
|
||
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
||
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
||
text_padded.zero_()
|
||
spec_padded.zero_()
|
||
wav_padded.zero_()
|
||
for i in range(len(ids_sorted_decreasing)):
|
||
row = batch[ids_sorted_decreasing[i]]
|
||
|
||
text = row[0]
|
||
text_padded[i, :text.size(0)] = text
|
||
text_lengths[i] = text.size(0)
|
||
|
||
spec = row[1]
|
||
spec_padded[i, :, :spec.size(1)] = spec
|
||
spec_lengths[i] = spec.size(1)
|
||
|
||
wav = row[2]
|
||
wav_padded[i, :, :wav.size(1)] = wav
|
||
wav_lengths[i] = wav.size(1)
|
||
|
||
if self.return_ids:
|
||
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing
|
||
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths
|
||
|
||
|
||
"""Multi speaker version"""
|
||
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
||
"""
|
||
1) loads audio, speaker_id, text pairs
|
||
2) normalizes text and converts them to sequences of integers
|
||
3) computes spectrograms from audio files.
|
||
"""
|
||
def __init__(self, audiopaths_sid_text, hparams, no_text=False, augmentation=False, augmentation_params=None, no_use_textfile = False):
|
||
if no_use_textfile:
|
||
self.audiopaths_sid_text = list()
|
||
else:
|
||
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
||
|
||
self.text_cleaners = hparams.text_cleaners
|
||
self.max_wav_value = hparams.max_wav_value
|
||
self.sampling_rate = hparams.sampling_rate
|
||
self.filter_length = hparams.filter_length
|
||
self.hop_length = hparams.hop_length
|
||
self.win_length = hparams.win_length
|
||
self.sampling_rate = hparams.sampling_rate
|
||
self.no_text = no_text
|
||
self.augmentation = augmentation
|
||
if augmentation :
|
||
self.gain_p = augmentation_params.gain_p
|
||
self.min_gain_in_db = augmentation_params.min_gain_in_db
|
||
self.max_gain_in_db = augmentation_params.max_gain_in_db
|
||
self.time_stretch_p = augmentation_params.time_stretch_p
|
||
self.min_rate = augmentation_params.min_rate
|
||
self.max_rate = augmentation_params.max_rate
|
||
self.pitch_shift_p = augmentation_params.pitch_shift_p
|
||
self.min_semitones = augmentation_params.min_semitones
|
||
self.max_semitones = augmentation_params.max_semitones
|
||
self.add_gaussian_noise_p = augmentation_params.add_gaussian_noise_p
|
||
self.min_amplitude = augmentation_params.min_amplitude
|
||
self.max_amplitude = augmentation_params.max_amplitude
|
||
self.frequency_mask_p = augmentation_params.frequency_mask_p
|
||
|
||
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
||
|
||
self.add_blank = hparams.add_blank
|
||
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
||
self.max_text_len = getattr(hparams, "max_text_len", 1000)
|
||
|
||
random.seed(1234)
|
||
random.shuffle(self.audiopaths_sid_text)
|
||
self._filter()
|
||
|
||
@retry(tries=30, delay=10)
|
||
def _filter(self):
|
||
"""
|
||
Filter text & store spec lengths
|
||
"""
|
||
audiopaths_sid_text_new = []
|
||
lengths = []
|
||
|
||
# for audiopath, sid, text in tqdm.tqdm(self.audiopaths_sid_text):
|
||
for audiopath, sid, text in self.audiopaths_sid_text:
|
||
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
||
audiopaths_sid_text_new.append([audiopath, sid, text])
|
||
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
||
self.audiopaths_sid_text = audiopaths_sid_text_new
|
||
self.lengths = lengths
|
||
|
||
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
||
# separate filename, speaker_id and text
|
||
wavdata, sid, text = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2]
|
||
text = self.get_text(text)
|
||
if self.no_text:
|
||
text = self.get_text("a")
|
||
spec, wav = self.get_audio(wavdata)
|
||
sid = self.get_sid(sid)
|
||
return (text, spec, wav, sid)
|
||
|
||
@retry(exceptions=(PermissionError), tries=100, delay=10)
|
||
def get_audio(self, wavdata):
|
||
# 音声データは±1.0内に正規化したtorchベクトルでunsqueeze(0)で外側1次元くるんだものを扱う
|
||
audio = torch.FloatTensor(wavdata.astype(np.float32))
|
||
sampling_rate=24000
|
||
try:
|
||
if sampling_rate != self.sampling_rate:
|
||
raise ValueError("[Error] Exception: source {} SR doesn't match target {} SR".format(
|
||
sampling_rate, self.sampling_rate))
|
||
except ValueError as e:
|
||
print(e)
|
||
exit()
|
||
audio_norm = self.get_normalized_audio(audio, self.max_wav_value)
|
||
|
||
if self.augmentation:
|
||
audio_augmented = self.add_augmentation(audio_norm, sampling_rate)
|
||
audio_noised = self.add_noise(audio_augmented, sampling_rate)
|
||
# ノーマライズ後のaugmentationとnoise付加で範囲外になったところを削る
|
||
audio_augmented = torch.clamp(audio_augmented, -1, 1)
|
||
audio_noised = torch.clamp(audio_noised, -1, 1)
|
||
# audio(音声波形)は教師信号となるのでノイズは含まずaugmentationのみしたものを使用
|
||
audio_norm = audio_augmented
|
||
# spec(スペクトログラム)は入力信号となるのでaugmentationしてさらにノイズを付加したものを使用
|
||
spec = spectrogram_torch(audio_noised, self.filter_length,
|
||
self.sampling_rate, self.hop_length, self.win_length,
|
||
center=False)
|
||
spec_noised = self.add_spectrogram_noise(spec)
|
||
spec = torch.squeeze(spec_noised, 0)
|
||
else:
|
||
spec = spectrogram_torch(audio_norm, self.filter_length,
|
||
self.sampling_rate, self.hop_length, self.win_length,
|
||
center=False)
|
||
spec = torch.squeeze(spec, 0)
|
||
return spec, audio_norm
|
||
|
||
def add_augmentation(self, audio, sampling_rate):
|
||
gain_in_db = 0.0
|
||
if random.random() <= self.gain_p:
|
||
gain_in_db = random.uniform(self.min_gain_in_db, self.max_gain_in_db)
|
||
time_stretch_rate = 1.0
|
||
if random.random() <= self.time_stretch_p:
|
||
time_stretch_rate = random.uniform(self.min_rate, self.max_rate)
|
||
pitch_shift_semitones = 0
|
||
if random.random() <= self.pitch_shift_p:
|
||
pitch_shift_semitones = random.uniform(self.min_semitones, self.max_semitones) * 100 # 1/100 semitone 単位指定のため
|
||
augmentation_effects = [
|
||
["gain", f"{gain_in_db}"],
|
||
["tempo", f"{time_stretch_rate}"],
|
||
["pitch", f"{pitch_shift_semitones}"],
|
||
["rate", f"{sampling_rate}"]
|
||
]
|
||
audio_augmented, _ = torchaudio.sox_effects.apply_effects_tensor(audio, sampling_rate, augmentation_effects)
|
||
return audio_augmented
|
||
|
||
def add_noise(self, audio, sampling_rate):
|
||
# AddGaussianNoise
|
||
audio = self.add_gaussian_noise(audio)
|
||
return audio
|
||
|
||
def add_gaussian_noise(self, audio):
|
||
assert self.min_amplitude >= 0.0
|
||
assert self.max_amplitude >= 0.0
|
||
assert self.max_amplitude >= self.min_amplitude
|
||
if random.random() > self.add_gaussian_noise_p:
|
||
return audio
|
||
amplitude = random.uniform(self.min_amplitude, self.max_amplitude)
|
||
noise = torch.randn(audio.size())
|
||
noised_audio = audio + amplitude * noise
|
||
return noised_audio
|
||
|
||
def add_spectrogram_noise(self, spec):
|
||
# FrequencyMask
|
||
masking = torchaudio.transforms.FrequencyMasking(freq_mask_param=80)
|
||
masked = masking(spec)
|
||
return masked
|
||
|
||
def get_normalized_audio(self, audio, max_wav_value):
|
||
audio_norm = audio / max_wav_value
|
||
audio_norm = audio_norm.unsqueeze(0)
|
||
return audio_norm
|
||
|
||
def get_text(self, text):
|
||
if self.cleaned_text:
|
||
text_norm = cleaned_text_to_sequence(text)
|
||
else:
|
||
text_norm = text_to_sequence(text, self.text_cleaners)
|
||
if self.add_blank:
|
||
text_norm = commons.intersperse(text_norm, 0)
|
||
text_norm = torch.LongTensor(text_norm)
|
||
return text_norm
|
||
|
||
def get_sid(self, sid):
|
||
sid = torch.LongTensor([int(sid)])
|
||
return sid
|
||
|
||
def __getitem__(self, index):
|
||
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
||
|
||
def __len__(self):
|
||
return len(self.audiopaths_sid_text)
|
||
|
||
|
||
class TextAudioSpeakerCollate():
|
||
""" Zero-pads model inputs and targets
|
||
"""
|
||
def __init__(self, return_ids=False, no_text = False):
|
||
self.return_ids = return_ids
|
||
self.no_text = no_text
|
||
|
||
def __call__(self, batch):
|
||
"""Collate's training batch from normalized text, audio and speaker identities
|
||
PARAMS
|
||
------
|
||
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
||
"""
|
||
# Right zero-pad all one-hot text sequences to max input length
|
||
|
||
_, ids_sorted_decreasing = torch.sort(
|
||
torch.LongTensor([x[1].size(1) for x in batch]),
|
||
dim=0, descending=True)
|
||
|
||
max_text_len = max([len(x[0]) for x in batch])
|
||
max_spec_len = max([x[1].size(1) for x in batch])
|
||
max_wav_len = max([x[2].size(1) for x in batch])
|
||
|
||
text_lengths = torch.LongTensor(len(batch))
|
||
spec_lengths = torch.LongTensor(len(batch))
|
||
wav_lengths = torch.LongTensor(len(batch))
|
||
sid = torch.LongTensor(len(batch))
|
||
|
||
text_padded = torch.LongTensor(len(batch), max_text_len)
|
||
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
||
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
||
text_padded.zero_()
|
||
spec_padded.zero_()
|
||
wav_padded.zero_()
|
||
for i in range(len(ids_sorted_decreasing)):
|
||
row = batch[ids_sorted_decreasing[i]]
|
||
|
||
text = row[0]
|
||
text_padded[i, :text.size(0)] = text
|
||
text_lengths[i] = text.size(0)
|
||
|
||
spec = row[1]
|
||
spec_padded[i, :, :spec.size(1)] = spec
|
||
spec_lengths[i] = spec.size(1)
|
||
|
||
wav = row[2]
|
||
wav_padded[i, :, :wav.size(1)] = wav
|
||
wav_lengths[i] = wav.size(1)
|
||
|
||
sid[i] = row[3]
|
||
|
||
if self.return_ids:
|
||
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
|
||
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid
|
||
|
||
|
||
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||
"""
|
||
Maintain similar input lengths in a batch.
|
||
Length groups are specified by boundaries.
|
||
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
||
|
||
It removes samples which are not included in the boundaries.
|
||
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
||
"""
|
||
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
|
||
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
||
self.lengths = dataset.lengths
|
||
self.batch_size = batch_size
|
||
self.boundaries = boundaries
|
||
|
||
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
||
self.total_size = sum(self.num_samples_per_bucket)
|
||
self.num_samples = self.total_size // self.num_replicas
|
||
|
||
def _create_buckets(self):
|
||
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
||
for i in range(len(self.lengths)):
|
||
length = self.lengths[i]
|
||
idx_bucket = self._bisect(length)
|
||
if idx_bucket != -1:
|
||
buckets[idx_bucket].append(i)
|
||
|
||
for i in range(len(buckets) - 1, 0, -1):
|
||
if len(buckets[i]) == 0:
|
||
buckets.pop(i)
|
||
self.boundaries.pop(i+1)
|
||
|
||
num_samples_per_bucket = []
|
||
for i in range(len(buckets)):
|
||
len_bucket = len(buckets[i])
|
||
total_batch_size = self.num_replicas * self.batch_size
|
||
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
|
||
num_samples_per_bucket.append(len_bucket + rem)
|
||
return buckets, num_samples_per_bucket
|
||
|
||
def __iter__(self):
|
||
# deterministically shuffle based on epoch
|
||
g = torch.Generator()
|
||
g.manual_seed(self.epoch)
|
||
|
||
indices = []
|
||
if self.shuffle:
|
||
for bucket in self.buckets:
|
||
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
||
else:
|
||
for bucket in self.buckets:
|
||
indices.append(list(range(len(bucket))))
|
||
|
||
batches = []
|
||
for i in range(len(self.buckets)):
|
||
next_bucket = (i+1) % len(self.buckets)
|
||
bucket = self.buckets[i]
|
||
len_bucket = len(bucket)
|
||
ids_bucket = indices[i]
|
||
num_samples_bucket = self.num_samples_per_bucket[i]
|
||
|
||
if len_bucket == 0:
|
||
print("[Warn] Exception: length of buckets {} is 0. ID:{} Skip.".format(i,i))
|
||
continue
|
||
|
||
# add extra samples to make it evenly divisible
|
||
rem = num_samples_bucket - len_bucket
|
||
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
|
||
|
||
# subsample
|
||
ids_bucket = ids_bucket[self.rank::self.num_replicas]
|
||
|
||
# batching
|
||
for j in range(len(ids_bucket) // self.batch_size):
|
||
batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
|
||
batches.append(batch)
|
||
|
||
if self.shuffle:
|
||
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
||
batches = [batches[i] for i in batch_ids]
|
||
self.batches = batches
|
||
|
||
assert len(self.batches) * self.batch_size == self.num_samples
|
||
return iter(self.batches)
|
||
|
||
def _bisect(self, x, lo=0, hi=None):
|
||
if hi is None:
|
||
hi = len(self.boundaries) - 1
|
||
|
||
if hi > lo:
|
||
mid = (hi + lo) // 2
|
||
if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
|
||
return mid
|
||
elif x <= self.boundaries[mid]:
|
||
return self._bisect(x, lo, mid)
|
||
else:
|
||
return self._bisect(x, mid + 1, hi)
|
||
else:
|
||
return -1
|
||
|
||
def __len__(self):
|
||
return self.num_samples // self.batch_size
|