voice-changer/server/voice_changer/RVC/deviceManager/DeviceManager.py

83 lines
2.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import torch
import onnxruntime
class DeviceManager(object):
_instance = None
forceTensor: bool = False
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls()
return cls._instance
def __init__(self):
self.gpu_num = torch.cuda.device_count()
self.mps_enabled: bool = (
getattr(torch.backends, "mps", None) is not None
and torch.backends.mps.is_available()
)
def getDevice(self, id: int):
if id < 0 or (self.gpu_num == 0 and self.mps_enabled is False):
dev = torch.device("cpu")
elif self.mps_enabled:
dev = torch.device("mps")
else:
dev = torch.device("cuda", index=id)
return dev
def getOnnxExecutionProvider(self, gpu: int):
availableProviders = onnxruntime.get_available_providers()
if gpu >= 0 and "CUDAExecutionProvider" in availableProviders:
return ["CUDAExecutionProvider"], [{"device_id": gpu}]
elif gpu >= 0 and "DmlExecutionProvider" in availableProviders:
return ["DmlExecutionProvider"], [{}]
else:
return ["CPUExecutionProvider"], [
{
"intra_op_num_threads": 8,
"execution_mode": onnxruntime.ExecutionMode.ORT_PARALLEL,
"inter_op_num_threads": 8,
}
]
def setForceTensor(self, forceTensor: bool):
self.forceTensor = forceTensor
def halfPrecisionAvailable(self, id: int):
if self.gpu_num == 0:
return False
if id < 0:
return False
if self.forceTensor:
return False
try:
gpuName = torch.cuda.get_device_name(id).upper()
if (
("16" in gpuName and "V100" not in gpuName)
or "P40" in gpuName.upper()
or "1070" in gpuName
or "1080" in gpuName
):
return False
except Exception as e:
print(e)
return False
cap = torch.cuda.get_device_capability(id)
if cap[0] < 7: # コンピューティング機能が7以上の場合half precisionが使えるとされているが例外があるT500とか
return False
return True
def getDeviceMemory(self, id: int):
try:
return torch.cuda.get_device_properties(id).total_memory
# except Exception as e:
except:
# print(e)
return 0