mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-26 06:55:02 +03:00
448 lines
16 KiB
Python
448 lines
16 KiB
Python
import sys
|
|
import os
|
|
from dataclasses import asdict
|
|
from typing import cast
|
|
import numpy as np
|
|
import torch
|
|
import torchaudio
|
|
from ModelSample import getModelSamples
|
|
from voice_changer.RVC.ModelSlot import ModelSlot
|
|
from voice_changer.RVC.SampleDownloader import downloadModelFiles
|
|
|
|
|
|
# avoiding parse arg error in RVC
|
|
sys.argv = ["MMVCServerSIO.py"]
|
|
|
|
if sys.platform.startswith("darwin"):
|
|
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
|
|
if len(baseDir) != 1:
|
|
print("baseDir should be only one ", baseDir)
|
|
sys.exit()
|
|
modulePath = os.path.join(baseDir[0], "RVC")
|
|
sys.path.append(modulePath)
|
|
else:
|
|
sys.path.append("RVC")
|
|
|
|
from voice_changer.RVC.modelMerger.MergeModel import merge_model
|
|
from voice_changer.RVC.modelMerger.MergeModelRequest import MergeModelRequest
|
|
from voice_changer.RVC.ModelSlotGenerator import (
|
|
_setInfoByONNX,
|
|
_setInfoByPytorch,
|
|
)
|
|
from voice_changer.RVC.RVCSettings import RVCSettings
|
|
from voice_changer.RVC.embedder.EmbedderManager import EmbedderManager
|
|
from voice_changer.utils.LoadModelParams import LoadModelParams
|
|
from voice_changer.utils.VoiceChangerModel import AudioInOut
|
|
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
|
|
from voice_changer.RVC.onnxExporter.export2onnx import export2onnx
|
|
from voice_changer.RVC.pitchExtractor.PitchExtractorManager import PitchExtractorManager
|
|
from voice_changer.RVC.pipeline.PipelineGenerator import createPipeline
|
|
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
|
|
from voice_changer.RVC.pipeline.Pipeline import Pipeline
|
|
|
|
from Exceptions import NoModeLoadedException
|
|
from const import RVC_MODEL_DIRNAME, SAMPLES_JSONS, UPLOAD_DIR
|
|
import shutil
|
|
import json
|
|
|
|
|
|
class RVC:
|
|
initialLoad: bool = True
|
|
settings: RVCSettings = RVCSettings()
|
|
|
|
pipeline: Pipeline | None = None
|
|
|
|
deviceManager = DeviceManager.get_instance()
|
|
|
|
audio_buffer: AudioInOut | None = None
|
|
prevVol: float = 0
|
|
params: VoiceChangerParams
|
|
currentSlot: int = 0
|
|
needSwitch: bool = False
|
|
|
|
def __init__(self, params: VoiceChangerParams):
|
|
self.pitchExtractor = PitchExtractorManager.getPitchExtractor(
|
|
self.settings.f0Detector
|
|
)
|
|
self.params = params
|
|
EmbedderManager.initialize(params)
|
|
self.loadSlots()
|
|
print("[Voice Changer] RVC initialization: ", params)
|
|
|
|
# サンプルカタログ作成
|
|
sampleJsons: list[str] = []
|
|
for url in SAMPLES_JSONS:
|
|
filename = os.path.basename(url)
|
|
sampleJsons.append(filename)
|
|
sampleModels = getModelSamples(sampleJsons, "RVC")
|
|
if sampleModels is not None:
|
|
self.settings.sampleModels = sampleModels
|
|
|
|
# 起動時にスロットにモデルがある場合はロードしておく
|
|
if len(self.settings.modelSlots) > 0:
|
|
for i, slot in enumerate(self.settings.modelSlots):
|
|
if len(slot.modelFile) > 0:
|
|
self.prepareModel(i)
|
|
self.settings.modelSlotIndex = i
|
|
self.switchModel(self.settings.modelSlotIndex)
|
|
self.initialLoad = False
|
|
break
|
|
self.prevVol = 0.0
|
|
|
|
def getSampleInfo(self, id: str):
|
|
sampleInfos = list(filter(lambda x: x.id == id, self.settings.sampleModels))
|
|
if len(sampleInfos) > 0:
|
|
return sampleInfos[0]
|
|
else:
|
|
None
|
|
|
|
def moveToModelDir(self, file: str, dstDir: str):
|
|
dst = os.path.join(dstDir, os.path.basename(file))
|
|
if os.path.exists(dst):
|
|
os.remove(dst)
|
|
shutil.move(file, dst)
|
|
return dst
|
|
|
|
def loadModel(self, props: LoadModelParams):
|
|
target_slot_idx = props.slot
|
|
params = props.params
|
|
slotInfo: ModelSlot = ModelSlot()
|
|
|
|
print("loadModel", params)
|
|
# サンプルが指定されたときはダウンロードしてメタデータをでっちあげる
|
|
if len(params["sampleId"]) > 0:
|
|
sampleId = params["sampleId"]
|
|
sampleInfo = self.getSampleInfo(sampleId)
|
|
useIndex = params["rvcIndexDownload"]
|
|
|
|
if sampleInfo is None:
|
|
print("[Voice Changer] sampleInfo is None")
|
|
return
|
|
modelPath, indexPath = downloadModelFiles(sampleInfo, useIndex)
|
|
slotInfo.modelFile = modelPath
|
|
if indexPath is not None:
|
|
slotInfo.indexFile = indexPath
|
|
|
|
slotInfo.sampleId = sampleInfo.id
|
|
slotInfo.credit = sampleInfo.credit
|
|
slotInfo.description = sampleInfo.description
|
|
slotInfo.name = sampleInfo.name
|
|
slotInfo.termsOfUseUrl = sampleInfo.termsOfUseUrl
|
|
# slotInfo.samplingRate = sampleInfo.sampleRate
|
|
# slotInfo.modelType = sampleInfo.modelType
|
|
# slotInfo.f0 = sampleInfo.f0
|
|
else:
|
|
slotInfo.modelFile = params["files"]["rvcModel"]
|
|
slotInfo.indexFile = (
|
|
params["files"]["rvcIndex"] if "rvcIndex" in params["files"] else None
|
|
)
|
|
|
|
slotInfo.defaultTune = params["defaultTune"]
|
|
slotInfo.defaultIndexRatio = params["defaultIndexRatio"]
|
|
slotInfo.isONNX = slotInfo.modelFile.endswith(".onnx")
|
|
|
|
if slotInfo.isONNX:
|
|
_setInfoByONNX(slotInfo)
|
|
else:
|
|
_setInfoByPytorch(slotInfo)
|
|
|
|
# メタデータを見て、永続化モデルフォルダに移動させる
|
|
# その際に、メタデータのファイル格納場所も書き換える
|
|
slotDir = os.path.join(
|
|
self.params.model_dir, RVC_MODEL_DIRNAME, str(target_slot_idx)
|
|
)
|
|
os.makedirs(slotDir, exist_ok=True)
|
|
slotInfo.modelFile = self.moveToModelDir(slotInfo.modelFile, slotDir)
|
|
if slotInfo.indexFile is not None:
|
|
slotInfo.indexFile = self.moveToModelDir(slotInfo.indexFile, slotDir)
|
|
json.dump(asdict(slotInfo), open(os.path.join(slotDir, "params.json"), "w"))
|
|
self.loadSlots()
|
|
|
|
# 初回のみロード(起動時にスロットにモデルがあった場合はinitialLoadはFalseになっている)
|
|
if self.initialLoad:
|
|
self.prepareModel(target_slot_idx)
|
|
self.settings.modelSlotIndex = target_slot_idx
|
|
self.switchModel(self.settings.modelSlotIndex)
|
|
self.initialLoad = False
|
|
elif target_slot_idx == self.currentSlot:
|
|
self.prepareModel(target_slot_idx)
|
|
|
|
return self.get_info()
|
|
|
|
def loadSlots(self):
|
|
dirname = os.path.join(self.params.model_dir, RVC_MODEL_DIRNAME)
|
|
if not os.path.exists(dirname):
|
|
return
|
|
|
|
modelSlots: list[ModelSlot] = []
|
|
for slot_idx in range(len(self.settings.modelSlots)):
|
|
slotDir = os.path.join(
|
|
self.params.model_dir, RVC_MODEL_DIRNAME, str(slot_idx)
|
|
)
|
|
jsonDict = os.path.join(slotDir, "params.json")
|
|
if os.path.exists(jsonDict):
|
|
jsonDict = json.load(open(os.path.join(slotDir, "params.json")))
|
|
slotInfo = ModelSlot(**jsonDict)
|
|
else:
|
|
slotInfo = ModelSlot()
|
|
modelSlots.append(slotInfo)
|
|
self.settings.modelSlots = modelSlots
|
|
|
|
def update_settings(self, key: str, val: int | float | str):
|
|
if key in self.settings.intData:
|
|
# 設定前処理
|
|
val = cast(int, val)
|
|
if key == "modelSlotIndex":
|
|
if val < 0:
|
|
return True
|
|
val = val % 1000 # Quick hack for same slot is selected
|
|
if (
|
|
self.settings.modelSlots[val].modelFile is None
|
|
or self.settings.modelSlots[val].modelFile == ""
|
|
):
|
|
print("[Voice Changer] slot does not have model.")
|
|
return True
|
|
self.prepareModel(val)
|
|
|
|
# 設定
|
|
setattr(self.settings, key, val)
|
|
|
|
if key == "gpu":
|
|
self.prepareModel(self.settings.modelSlotIndex)
|
|
|
|
elif key in self.settings.floatData:
|
|
setattr(self.settings, key, float(val))
|
|
elif key in self.settings.strData:
|
|
setattr(self.settings, key, str(val))
|
|
if key == "f0Detector" and self.pipeline is not None:
|
|
pitchExtractor = PitchExtractorManager.getPitchExtractor(
|
|
self.settings.f0Detector
|
|
)
|
|
self.pipeline.setPitchExtractor(pitchExtractor)
|
|
else:
|
|
return False
|
|
return True
|
|
|
|
def prepareModel(self, slot: int):
|
|
if slot < 0:
|
|
print("[Voice Changer] Prepare Model of slot skip:", slot)
|
|
return self.get_info()
|
|
modelSlot = self.settings.modelSlots[slot]
|
|
|
|
print("[Voice Changer] Prepare Model of slot:", slot)
|
|
|
|
# pipelineの生成
|
|
self.next_pipeline = createPipeline(
|
|
modelSlot, self.settings.gpu, self.settings.f0Detector
|
|
)
|
|
|
|
# その他の設定
|
|
self.next_trans = modelSlot.defaultTune
|
|
self.next_index_ratio = modelSlot.defaultIndexRatio
|
|
self.next_samplingRate = modelSlot.samplingRate
|
|
self.next_framework = "ONNX" if modelSlot.isONNX else "PyTorch"
|
|
# self.needSwitch = True
|
|
print("[Voice Changer] Prepare done.")
|
|
self.switchModel(slot)
|
|
return self.get_info()
|
|
|
|
def switchModel(self, slot: int):
|
|
print("[Voice Changer] Switching model..")
|
|
self.pipeline = self.next_pipeline
|
|
self.settings.tran = self.next_trans
|
|
self.settings.indexRatio = self.next_index_ratio
|
|
self.settings.modelSamplingRate = self.next_samplingRate
|
|
self.settings.framework = self.next_framework
|
|
|
|
# self.currentSlot = self.settings.modelSlotIndex # prepareModelから呼ばれるということはupdate_settingsの中で呼ばれるということなので、まだmodelSlotIndexは更新されていない
|
|
self.currentSlot = slot
|
|
print(
|
|
"[Voice Changer] Switching model..done",
|
|
)
|
|
|
|
def get_info(self):
|
|
data = asdict(self.settings)
|
|
if self.pipeline is not None:
|
|
pipelineInfo = self.pipeline.getPipelineInfo()
|
|
data["pipelineInfo"] = pipelineInfo
|
|
return data
|
|
|
|
def get_processing_sampling_rate(self):
|
|
return self.settings.modelSamplingRate
|
|
|
|
def generate_input(
|
|
self,
|
|
newData: AudioInOut,
|
|
inputSize: int,
|
|
crossfadeSize: int,
|
|
solaSearchFrame: int = 0,
|
|
):
|
|
newData = newData.astype(np.float32) / 32768.0
|
|
|
|
if self.audio_buffer is not None:
|
|
# 過去のデータに連結
|
|
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0)
|
|
else:
|
|
self.audio_buffer = newData
|
|
|
|
convertSize = (
|
|
inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize
|
|
)
|
|
|
|
if convertSize % 128 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
|
convertSize = convertSize + (128 - (convertSize % 128))
|
|
|
|
convertOffset = -1 * convertSize
|
|
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
|
|
|
|
if self.pipeline is not None:
|
|
device = self.pipeline.device
|
|
else:
|
|
device = torch.device("cpu")
|
|
|
|
audio_buffer = torch.from_numpy(self.audio_buffer).to(
|
|
device=device, dtype=torch.float32
|
|
)
|
|
|
|
# 出力部分だけ切り出して音量を確認。(TODO:段階的消音にする)
|
|
cropOffset = -1 * (inputSize + crossfadeSize)
|
|
cropEnd = -1 * (crossfadeSize)
|
|
crop = audio_buffer[cropOffset:cropEnd]
|
|
vol = torch.sqrt(torch.square(crop).mean()).detach().cpu().numpy()
|
|
vol = max(vol, self.prevVol * 0.0)
|
|
self.prevVol = vol
|
|
|
|
return (audio_buffer, convertSize, vol)
|
|
|
|
def inference(self, data):
|
|
if self.settings.modelSlotIndex < 0:
|
|
print(
|
|
"[Voice Changer] wait for loading model...",
|
|
self.settings.modelSlotIndex,
|
|
self.currentSlot,
|
|
)
|
|
raise NoModeLoadedException("model_common")
|
|
# if self.needSwitch:
|
|
# print(
|
|
# f"[Voice Changer] Switch model {self.currentSlot} -> {self.settings.modelSlotIndex}"
|
|
# )
|
|
# self.switchModel()
|
|
# self.needSwitch = False
|
|
|
|
half = self.deviceManager.halfPrecisionAvailable(self.settings.gpu)
|
|
|
|
audio = data[0]
|
|
convertSize = data[1]
|
|
vol = data[2]
|
|
|
|
if vol < self.settings.silentThreshold:
|
|
return np.zeros(convertSize).astype(np.int16)
|
|
|
|
audio = torchaudio.functional.resample(
|
|
audio, self.settings.modelSamplingRate, 16000, rolloff=0.99
|
|
)
|
|
repeat = 3 if half else 1
|
|
repeat *= self.settings.rvcQuality # 0 or 3
|
|
sid = 0
|
|
f0_up_key = self.settings.tran
|
|
index_rate = self.settings.indexRatio
|
|
if_f0 = 1 if self.settings.modelSlots[self.currentSlot].f0 else 0
|
|
embOutputLayer = self.settings.modelSlots[self.currentSlot].embOutputLayer
|
|
useFinalProj = self.settings.modelSlots[self.currentSlot].useFinalProj
|
|
|
|
audio_out = self.pipeline.exec(
|
|
sid,
|
|
audio,
|
|
f0_up_key,
|
|
index_rate,
|
|
if_f0,
|
|
self.settings.extraConvertSize / self.settings.modelSamplingRate,
|
|
embOutputLayer,
|
|
useFinalProj,
|
|
repeat,
|
|
)
|
|
|
|
result = audio_out.detach().cpu().numpy() * np.sqrt(vol)
|
|
|
|
return result
|
|
|
|
def __del__(self):
|
|
del self.pipeline
|
|
|
|
# print("---------- REMOVING ---------------")
|
|
|
|
remove_path = os.path.join("RVC")
|
|
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
|
|
|
|
for key in list(sys.modules):
|
|
val = sys.modules.get(key)
|
|
try:
|
|
file_path = val.__file__
|
|
if file_path.find("RVC" + os.path.sep) >= 0:
|
|
# print("remove", key, file_path)
|
|
sys.modules.pop(key)
|
|
except Exception: # type:ignore
|
|
# print(e)
|
|
pass
|
|
|
|
def export2onnx(self):
|
|
modelSlot = self.settings.modelSlots[self.settings.modelSlotIndex]
|
|
|
|
if modelSlot.isONNX:
|
|
print("[Voice Changer] export2onnx, No pyTorch filepath.")
|
|
return {"status": "ng", "path": ""}
|
|
|
|
output_file_simple = export2onnx(self.settings.gpu, modelSlot)
|
|
return {
|
|
"status": "ok",
|
|
"path": f"/tmp/{output_file_simple}",
|
|
"filename": output_file_simple,
|
|
}
|
|
|
|
def merge_models(self, request: str):
|
|
print("[Voice Changer] MergeRequest:", request)
|
|
req: MergeModelRequest = MergeModelRequest.from_json(request)
|
|
merged = merge_model(req)
|
|
targetSlot = 0
|
|
if req.slot < 0:
|
|
targetSlot = len(self.settings.modelSlots) - 1
|
|
else:
|
|
targetSlot = req.slot
|
|
|
|
# いったんは、アップロードフォルダに格納する。(歴史的経緯)
|
|
# 後続のloadmodelを呼び出すことで永続化モデルフォルダに移動させられる。
|
|
storeDir = os.path.join(UPLOAD_DIR, f"{targetSlot}")
|
|
print("[Voice Changer] store merged model to:", storeDir)
|
|
os.makedirs(storeDir, exist_ok=True)
|
|
storeFile = os.path.join(storeDir, "merged.pth")
|
|
torch.save(merged, storeFile)
|
|
|
|
# loadmodelを呼び出して永続化モデルフォルダに移動させる。
|
|
params = {
|
|
"defaultTune": req.defaultTune,
|
|
"defaultIndexRatio": req.defaultIndexRatio,
|
|
"sampleId": "",
|
|
"files": {"rvcModel": storeFile},
|
|
}
|
|
props: LoadModelParams = LoadModelParams(
|
|
slot=targetSlot, isHalf=True, params=params
|
|
)
|
|
self.loadModel(props)
|
|
self.prepareModel(targetSlot)
|
|
self.settings.modelSlotIndex = targetSlot
|
|
self.currentSlot = self.settings.modelSlotIndex
|
|
|
|
def update_model_default(self):
|
|
print("[Voice Changer] UPDATE MODEL DEFAULT!!")
|
|
slotDir = os.path.join(
|
|
self.params.model_dir, RVC_MODEL_DIRNAME, str(self.currentSlot)
|
|
)
|
|
params = json.load(
|
|
open(os.path.join(slotDir, "params.json"), "r", encoding="utf-8")
|
|
)
|
|
params["defaultTune"] = self.settings.tran
|
|
params["defaultIndexRatio"] = self.settings.indexRatio
|
|
|
|
json.dump(params, open(os.path.join(slotDir, "params.json"), "w"))
|
|
self.loadSlots()
|