voice-changer/server/voice_changer/DiffusionSVC/inferencer/DiffusionSVCInferencer.py

133 lines
5.9 KiB
Python

import numpy as np
import torch
from voice_changer.DiffusionSVC.inferencer.Inferencer import Inferencer
from voice_changer.DiffusionSVC.inferencer.diffusion_svc_model.diffusion.naive.naive import Unit2MelNaive
from voice_changer.DiffusionSVC.inferencer.diffusion_svc_model.diffusion.unit2mel import Unit2Mel, load_model_vocoder_from_combo
from voice_changer.DiffusionSVC.inferencer.diffusion_svc_model.diffusion.vocoder import Vocoder
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
from voice_changer.utils.Timer import Timer
class DiffusionSVCInferencer(Inferencer):
def __init__(self):
self.diff_model: Unit2Mel | None = None
self.naive_model: Unit2MelNaive | None = None
self.vocoder: Vocoder | None = None
def loadModel(self, file: str, gpu: int):
self.setProps("DiffusionSVCCombo", file, True, gpu)
self.dev = DeviceManager.get_instance().getDevice(gpu)
# isHalf = DeviceManager.get_instance().halfPrecisionAvailable(gpu)
diff_model, diff_args, naive_model, naive_args, vocoder = load_model_vocoder_from_combo(file, device=self.dev)
self.diff_model = diff_model
self.naive_model = naive_model
self.vocoder = vocoder
self.diff_args = diff_args
self.naive_args = naive_args
# cpt = torch.load(file, map_location="cpu")
# model = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=isHalf)
# model.eval()
# model.load_state_dict(cpt["weight"], strict=False)
# model = model.to(dev)
# if isHalf:
# model = model.half()
# self.model = model
return self
def getConfig(self) -> tuple[int, int]:
model_sampling_rate = int(self.diff_args.data.sampling_rate)
model_block_size = int(self.diff_args.data.block_size)
return model_block_size, model_sampling_rate
@torch.no_grad() # 最基本推理代码,将输入标准化为tensor,只与mel打交道
def __call__(self, units, f0, volume, spk_id=1, spk_mix_dict=None, aug_shift=0,
gt_spec=None, infer_speedup=10, method='dpm-solver', k_step=None, use_tqdm=True,
spk_emb=None):
if self.diff_args.model.k_step_max is not None:
if k_step is None:
raise ValueError("k_step must not None when Shallow Diffusion Model inferring")
if k_step > int(self.diff_args.model.k_step_max):
raise ValueError("k_step must <= k_step_max of Shallow Diffusion Model")
if gt_spec is None:
raise ValueError("gt_spec must not None when Shallow Diffusion Model inferring, gt_spec can from "
"input mel or output of naive model")
aug_shift = torch.from_numpy(np.array([[float(aug_shift)]])).float().to(self.dev)
# spk_id
spk_emb_dict = None
if self.diff_args.model.use_speaker_encoder: # with speaker encoder
spk_mix_dict, spk_emb = self.pre_spk_emb(spk_id, spk_mix_dict, len(units), spk_emb)
# without speaker encoder
else:
spk_id = torch.LongTensor(np.array([[int(spk_id)]])).to(self.dev)
return self.diff_model(units, f0, volume, spk_id=spk_id, spk_mix_dict=spk_mix_dict, aug_shift=aug_shift, gt_spec=gt_spec, infer=True, infer_speedup=infer_speedup, method=method, k_step=k_step, use_tqdm=use_tqdm, spk_emb=spk_emb, spk_emb_dict=spk_emb_dict)
@torch.no_grad()
def naive_model_call(self, units, f0, volume, spk_id=1, spk_mix_dict=None,
aug_shift=0, spk_emb=None):
# spk_id
spk_emb_dict = None
if self.diff_args.model.use_speaker_encoder: # with speaker encoder
spk_mix_dict, spk_emb = self.pre_spk_emb(spk_id, spk_mix_dict, len(units), spk_emb)
# without speaker encoder
else:
spk_id = torch.LongTensor(np.array([[int(spk_id)]])).to(self.dev)
aug_shift = torch.from_numpy(np.array([[float(aug_shift)]])).float().to(self.dev)
out_spec = self.naive_model(units, f0, volume, spk_id=spk_id, spk_mix_dict=spk_mix_dict,
aug_shift=aug_shift, infer=True,
spk_emb=spk_emb, spk_emb_dict=spk_emb_dict)
return out_spec
@torch.no_grad()
def mel2wav(self, mel, f0, start_frame=0):
if start_frame == 0:
return self.vocoder.infer(mel, f0)
else: # for realtime speedup
mel = mel[:, start_frame:, :]
f0 = f0[:, start_frame:, :]
out_wav = self.vocoder.infer(mel, f0)
return torch.nn.functional.pad(out_wav, (start_frame * self.vocoder.vocoder_hop_size, 0))
@torch.no_grad()
def infer(
self,
audio_t: torch.Tensor,
feats: torch.Tensor,
pitch: torch.Tensor,
volume: torch.Tensor,
mask: torch.Tensor,
sid: torch.Tensor,
k_step: int,
infer_speedup: int,
silence_front: float,
) -> torch.Tensor:
with Timer("pre-process") as t:
gt_spec = self.naive_model_call(feats, pitch, volume, spk_id=sid, spk_mix_dict=None, aug_shift=0, spk_emb=None)
# gt_spec = self.vocoder.extract(audio_t, 16000)
# gt_spec = torch.cat((gt_spec, gt_spec[:, -1:, :]), 1)
# print("[ ----Timer::1: ]", t.secs)
with Timer("pre-process") as t:
out_mel = self.__call__(feats, pitch, volume, spk_id=sid, spk_mix_dict=None, aug_shift=0, gt_spec=gt_spec, infer_speedup=infer_speedup, method='dpm-solver', k_step=k_step, use_tqdm=False, spk_emb=None)
# print("[ ----Timer::2: ]", t.secs)
with Timer("pre-process") as t: # NOQA
start_frame = int(silence_front * self.vocoder.vocoder_sample_rate / self.vocoder.vocoder_hop_size)
out_wav = self.mel2wav(out_mel, pitch, start_frame=start_frame)
out_wav *= mask
# print("[ ----Timer::3: ]", t.secs, start_frame, out_mel.shape)
return out_wav.squeeze()