mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-26 06:55:02 +03:00
76 lines
3.2 KiB
Python
Executable File
76 lines
3.2 KiB
Python
Executable File
import torch
|
|
from scipy.io.wavfile import write, read
|
|
import numpy as np
|
|
import struct, traceback
|
|
|
|
import utils
|
|
import commons
|
|
from models import SynthesizerTrn
|
|
from text.symbols import symbols
|
|
from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
|
from mel_processing import spectrogram_torch
|
|
from text import text_to_sequence, cleaned_text_to_sequence
|
|
|
|
|
|
class VoiceChanger():
|
|
def __init__(self, config, model):
|
|
self.hps = utils.get_hparams_from_file(config)
|
|
self.net_g = SynthesizerTrn(
|
|
len(symbols),
|
|
self.hps.data.filter_length // 2 + 1,
|
|
self.hps.train.segment_size // self.hps.data.hop_length,
|
|
n_speakers=self.hps.data.n_speakers,
|
|
**self.hps.model)
|
|
self.net_g.eval()
|
|
self.gpu_num = torch.cuda.device_count()
|
|
utils.load_checkpoint( model, self.net_g, None)
|
|
print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num})")
|
|
|
|
def destroy(self):
|
|
del self.net_g
|
|
|
|
def on_request(self, gpu, srcId, dstId, timestamp, wav):
|
|
# if wav==0:
|
|
# samplerate, data=read("dummy.wav")
|
|
# unpackedData = data
|
|
# else:
|
|
# unpackedData = np.array(struct.unpack('<%sh'%(len(wav) // struct.calcsize('<h') ), wav))
|
|
# write("logs/received_data.wav", 24000, unpackedData.astype(np.int16))
|
|
|
|
unpackedData = wav
|
|
|
|
try:
|
|
|
|
text_norm = text_to_sequence("a", self.hps.data.text_cleaners)
|
|
text_norm = commons.intersperse(text_norm, 0)
|
|
text_norm = torch.LongTensor(text_norm)
|
|
|
|
audio = torch.FloatTensor(unpackedData.astype(np.float32))
|
|
audio_norm = audio /self.hps.data.max_wav_value
|
|
audio_norm = audio_norm.unsqueeze(0)
|
|
|
|
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
|
|
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
|
center=False)
|
|
spec = torch.squeeze(spec, 0)
|
|
sid = torch.LongTensor([int(srcId)])
|
|
|
|
data = (text_norm, spec, audio_norm, sid)
|
|
data = TextAudioSpeakerCollate()([data])
|
|
|
|
if gpu<0 or self.gpu_num==0 :
|
|
with torch.no_grad():
|
|
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cpu() for x in data]
|
|
sid_tgt1 = torch.LongTensor([dstId]).cpu()
|
|
audio1 = (self.net_g.cpu().voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy()
|
|
else:
|
|
with torch.no_grad():
|
|
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda(gpu) for x in data]
|
|
sid_tgt1 = torch.LongTensor([dstId]).cuda(gpu)
|
|
audio1 = (self.net_g.cuda(gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy()
|
|
except Exception as e:
|
|
print("VC PROCESSING!!!! EXCEPTION!!!", e)
|
|
print(traceback.format_exc())
|
|
|
|
audio1 = audio1.astype(np.int16)
|
|
return audio1 |