voice-changer/server/voice_changer/VoiceChanger.py
2023-02-18 04:15:34 +09:00

670 lines
30 KiB
Python
Executable File

from const import ERROR_NO_ONNX_SESSION, TMP_DIR
import torch
import os
import traceback
import numpy as np
from dataclasses import dataclass, asdict
import onnxruntime
from symbols import symbols
from models import SynthesizerTrn
import pyworld as pw
# from voice_changer.TrainerFunctions import TextAudioSpeakerCollate, spectrogram_torch, load_checkpoint, get_hparams_from_file
from voice_changer.client_modules import convert_continuos_f0, spectrogram_torch, TextAudioSpeakerCollate, get_hparams_from_file, load_checkpoint
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
import wave
import matplotlib
matplotlib.use('Agg')
import pylab
import librosa
import librosa.display
SAMPLING_RATE = 24000
import pyaudio
import json
from multiprocessing import Process, Queue
class MockStream:
"""
オーディオストリーミング入出力をファイル入出力にそのまま置き換えるためのモック
"""
def __init__(self, sampling_rate):
self.sampling_rate = sampling_rate
self.start_count = 2
self.end_count = 2
self.fr = None
self.fw = None
def open_inputfile(self, input_filename):
self.fr = wave.open(input_filename, 'rb')
def open_outputfile(self, output_filename):
self.fw = wave.open(output_filename, 'wb')
self.fw.setnchannels(1)
self.fw.setsampwidth(2)
self.fw.setframerate(self.sampling_rate)
def read(self, length, exception_on_overflow=False):
if self.start_count > 0:
wav = bytes(length * 2)
self.start_count -= 1 # 最初の2回はダミーの空データ送る
else:
wav = self.fr.readframes(length)
if len(wav) <= 0: # データなくなってから最後の2回はダミーの空データを送る
wav = bytes(length * 2)
self.end_count -= 1
if self.end_count < 0:
Hyperparameters.VC_END_FLAG = True
return wav
def write(self, wav):
self.fw.writeframes(wav)
def stop_stream(self):
pass
def close(self):
if self.fr != None:
self.fr.close()
self.fr = None
if self.fw != None:
self.fw.close()
self.fw = None
@dataclass
class VocieChangerSettings():
gpu: int = 0
srcId: int = 107
dstId: int = 100
crossFadeOffsetRate: float = 0.1
crossFadeEndRate: float = 0.9
crossFadeOverlapRate: float = 0.9
convertChunkNum: int = 32
minConvertSize: int = 0
framework: str = "PyTorch" # PyTorch or ONNX
f0Factor: float = 1.0
f0Detector: str = "dio" # dio or harvest
recordIO: int = 1 # 0:off, 1:on
serverMicProps: str = ""
pyTorchModelFile: str = ""
onnxModelFile: str = ""
configFile: str = ""
# ↓mutableな物だけ列挙
intData = ["gpu", "srcId", "dstId", "convertChunkNum", "minConvertSize", "recordIO"]
floatData = ["crossFadeOffsetRate", "crossFadeEndRate", "crossFadeOverlapRate", "f0Factor"]
strData = ["framework", "f0Detector", "serverMicProps"]
def readMicrophone(queue, sid, deviceIndex):
print("READ MIC", queue, sid, deviceIndex)
class VoiceChanger():
def __init__(self):
# 初期化
self.settings = VocieChangerSettings()
self.unpackedData_length = 0
self.net_g = None
self.onnx_session = None
self.currentCrossFadeOffsetRate = 0
self.currentCrossFadeEndRate = 0
self.currentCrossFadeOverlapRate = 0
self.gpu_num = torch.cuda.device_count()
self.text_norm = torch.LongTensor([0, 6, 0])
self.audio_buffer = torch.zeros(1, 0)
self.prev_audio = np.zeros(1)
self.mps_enabled = getattr(torch.backends, "mps", None) is not None and torch.backends.mps.is_available()
self._setupRecordIO()
print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num}, mps_enabled:{self.mps_enabled})")
def _setupRecordIO(self):
# IO Recorder Setup
if hasattr(self, "stream_out"):
self.stream_out.close()
mock_stream_out = MockStream(24000)
stream_output_file = os.path.join(TMP_DIR, "out.wav")
if os.path.exists(stream_output_file):
print("delete old analyze file.", stream_output_file)
os.remove(stream_output_file)
else:
print("old analyze file not exist.", stream_output_file)
mock_stream_out.open_outputfile(stream_output_file)
self.stream_out = mock_stream_out
if hasattr(self, "stream_in"):
self.stream_in.close()
mock_stream_in = MockStream(24000)
stream_input_file = os.path.join(TMP_DIR, "in.wav")
if os.path.exists(stream_input_file):
print("delete old analyze file.", stream_input_file)
os.remove(stream_input_file)
else:
print("old analyze file not exist.", stream_output_file)
mock_stream_in.open_outputfile(stream_input_file)
self.stream_in = mock_stream_in
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None):
self.settings.configFile = config
self.hps = get_hparams_from_file(config)
if pyTorch_model_file != None:
self.settings.pyTorchModelFile = pyTorch_model_file
if onnx_model_file:
self.settings.onnxModelFile = onnx_model_file
# PyTorchモデル生成
if pyTorch_model_file != None:
self.net_g = SynthesizerTrn(
spec_channels=self.hps.data.filter_length // 2 + 1,
segment_size=self.hps.train.segment_size // self.hps.data.hop_length,
inter_channels=self.hps.model.inter_channels,
hidden_channels=self.hps.model.hidden_channels,
upsample_rates=self.hps.model.upsample_rates,
upsample_initial_channel=self.hps.model.upsample_initial_channel,
upsample_kernel_sizes=self.hps.model.upsample_kernel_sizes,
n_flow=self.hps.model.n_flow,
dec_out_channels=1,
dec_kernel_size=7,
n_speakers=self.hps.data.n_speakers,
gin_channels=self.hps.model.gin_channels,
requires_grad_pe=self.hps.requires_grad.pe,
requires_grad_flow=self.hps.requires_grad.flow,
requires_grad_text_enc=self.hps.requires_grad.text_enc,
requires_grad_dec=self.hps.requires_grad.dec
)
self.net_g.eval()
load_checkpoint(pyTorch_model_file, self.net_g, None)
# utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
# ONNXモデル生成
if onnx_model_file != None:
ort_options = onnxruntime.SessionOptions()
ort_options.intra_op_num_threads = 8
self.onnx_session = onnxruntime.InferenceSession(
onnx_model_file,
providers=providers
)
return self.get_info()
def destroy(self):
del self.net_g
del self.onnx_session
def get_info(self):
data = asdict(self.settings)
data["onnxExecutionProvider"] = self.onnx_session.get_providers() if self.onnx_session != None else []
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
for f in files:
if data[f] != None and os.path.exists(data[f]):
data[f] = os.path.basename(data[f])
else:
data[f] = ""
return data
def _get_f0_dio(self, y, sr=SAMPLING_RATE):
_f0, time = pw.dio(y, sr, frame_period=5)
f0 = pw.stonemask(y, _f0, time, sr)
time = np.linspace(0, y.shape[0] / sr, len(time))
return f0, time
def _get_f0_harvest(self, y, sr=SAMPLING_RATE):
_f0, time = pw.harvest(y, sr, frame_period=5)
f0 = pw.stonemask(y, _f0, time, sr)
time = np.linspace(0, y.shape[0] / sr, len(time))
return f0, time
def update_setteings(self, key: str, val: any):
if key == "onnxExecutionProvider" and self.onnx_session != None:
if val == "CUDAExecutionProvider":
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
self.settings.gpu = 0
provider_options = [{'device_id': self.settings.gpu}]
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
else:
self.onnx_session.set_providers(providers=[val])
elif key in self.settings.intData:
setattr(self.settings, key, int(val))
if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None:
providers = self.onnx_session.get_providers()
print("Providers:", providers)
if "CUDAExecutionProvider" in providers:
provider_options = [{'device_id': self.settings.gpu}]
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
if key == "crossFadeOffsetRate" or key == "crossFadeEndRate":
self.unpackedData_length = 0
if key == "recordIO" and val == 1:
self._setupRecordIO()
if key == "recordIO" and val == 0:
pass
if key == "recordIO" and val == 2:
try:
stream_input_file = os.path.join(TMP_DIR, "in.wav")
analyze_file_dio = os.path.join(TMP_DIR, "analyze-dio.png")
analyze_file_harvest = os.path.join(TMP_DIR, "analyze-harvest.png")
y, sr = librosa.load(stream_input_file, SAMPLING_RATE)
y = y.astype(np.float64)
spec = librosa.amplitude_to_db(np.abs(librosa.stft(y, n_fft=2048, win_length=2048, hop_length=128)), ref=np.max)
f0_dio, times = self._get_f0_dio(y)
f0_harvest, times = self._get_f0_harvest(y)
pylab.close()
HOP_LENGTH = 128
img = librosa.display.specshow(spec, sr=SAMPLING_RATE, hop_length=HOP_LENGTH, x_axis='time', y_axis='log', )
pylab.plot(times, f0_dio, label='f0', color=(0, 1, 1, 0.6), linewidth=3)
pylab.savefig(analyze_file_dio)
pylab.close()
HOP_LENGTH = 128
img = librosa.display.specshow(spec, sr=SAMPLING_RATE, hop_length=HOP_LENGTH, x_axis='time', y_axis='log', )
pylab.plot(times, f0_harvest, label='f0', color=(0, 1, 1, 0.6), linewidth=3)
pylab.savefig(analyze_file_harvest)
except Exception as e:
print("recordIO exception", e)
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
if key == "serverMicProps":
if hasattr(self, "serverMicrophoneReaderProcess"):
self.serverMicrophoneReaderProcess.terminate()
if len(val) == 0:
print("server mic close")
pass
else:
props = json.loads(val)
print(props)
sid = props["sid"]
deviceIndex = props["deviceIndex"]
self.serverMicrophoneReaderProcessQueue = Queue()
self.serverMicrophoneReaderProcess = Process(target=readMicrophone, args=(
self.serverMicrophoneReaderProcessQueue, sid, deviceIndex,))
self.serverMicrophoneReaderProcess.start()
try:
print(sid, deviceIndex)
except Exception as e:
print(e)
# audio = pyaudio.PyAudio()
# audio_input_stream = audio.open(format=pyaudio.paInt16,
# channels=1,
# rate=SAMPLING_RATE,
# frames_per_buffer=4096,
# input_device_index=val,
# input=True)
else:
print(f"{key} is not mutalbe variable!")
return self.get_info()
def _generate_strength(self, unpackedData):
if self.unpackedData_length != unpackedData.shape[0] or self.currentCrossFadeOffsetRate != self.settings.crossFadeOffsetRate or self.currentCrossFadeEndRate != self.settings.crossFadeEndRate or self.currentCrossFadeOverlapRate != self.settings.crossFadeOverlapRate:
self.unpackedData_length = unpackedData.shape[0]
self.currentCrossFadeOffsetRate = self.settings.crossFadeOffsetRate
self.currentCrossFadeEndRate = self.settings.crossFadeEndRate
self.currentCrossFadeOverlapRate = self.settings.crossFadeOverlapRate
overlapSize = int(unpackedData.shape[0] * self.settings.crossFadeOverlapRate)
cf_offset = int(overlapSize * self.settings.crossFadeOffsetRate)
cf_end = int(overlapSize * self.settings.crossFadeEndRate)
cf_range = cf_end - cf_offset
percent = np.arange(cf_range) / cf_range
np_prev_strength = np.cos(percent * 0.5 * np.pi) ** 2
np_cur_strength = np.cos((1 - percent) * 0.5 * np.pi) ** 2
self.np_prev_strength = np.concatenate([np.ones(cf_offset), np_prev_strength, np.zeros(overlapSize - cf_offset - len(np_prev_strength))])
self.np_cur_strength = np.concatenate([np.zeros(cf_offset), np_cur_strength, np.ones(overlapSize - cf_offset - len(np_cur_strength))])
self.prev_strength = torch.FloatTensor(self.np_prev_strength)
self.cur_strength = torch.FloatTensor(self.np_cur_strength)
# torch.set_printoptions(edgeitems=2100)
print("Generated Strengths")
# print(f"cross fade: start:{cf_offset} end:{cf_end} range:{cf_range}")
# print(f"target_len:{unpackedData.shape[0]}, prev_len:{len(self.prev_strength)} cur_len:{len(self.cur_strength)}")
# print("Prev", self.prev_strength)
# print("Cur", self.cur_strength)
# ひとつ前の結果とサイズが変わるため、記録は消去する。
if hasattr(self, 'prev_audio1') == True:
delattr(self, "prev_audio1")
def _generate_input(self, unpackedData: any, convertSize: int):
# 今回変換するデータをテンソルとして整形する
audio = torch.FloatTensor(unpackedData.astype(np.float32)) # float32でtensorfを作成
audio_norm = audio / self.hps.data.max_wav_value # normalize
audio_norm = audio_norm.unsqueeze(0) # unsqueeze
self.audio_buffer = torch.cat([self.audio_buffer, audio_norm], axis=1) # 過去のデータに連結
# audio_norm = self.audio_buffer[:, -(convertSize + 1280 * 2):] # 変換対象の部分だけ抽出
audio_norm = self.audio_buffer[:, -(convertSize):] # 変換対象の部分だけ抽出
self.audio_buffer = audio_norm
# TBD: numpy <--> pytorch変換が行ったり来たりしているが、まずは動かすことを最優先。
audio_norm_np = audio_norm.squeeze().numpy().astype(np.float64)
if self.settings.f0Detector == "dio":
_f0, _time = pw.dio(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5)
f0 = pw.stonemask(audio_norm_np, _f0, _time, self.hps.data.sampling_rate)
else:
f0, t = pw.harvest(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5, f0_floor=71.0, f0_ceil=1000.0)
f0 = convert_continuos_f0(f0, int(audio_norm_np.shape[0] / self.hps.data.hop_length))
f0 = torch.from_numpy(f0.astype(np.float32))
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
center=False)
# dispose_stft_specs = 2
# spec = spec[:, dispose_stft_specs:-dispose_stft_specs]
# f0 = f0[dispose_stft_specs:-dispose_stft_specs]
spec = torch.squeeze(spec, 0)
sid = torch.LongTensor([int(self.settings.srcId)])
# data = (self.text_norm, spec, audio_norm, sid)
# data = TextAudioSpeakerCollate()([data])
data = TextAudioSpeakerCollate(
sample_rate=self.hps.data.sampling_rate,
hop_size=self.hps.data.hop_length,
f0_factor=self.settings.f0Factor
)([(spec, sid, f0)])
return data, f0.numpy()
def _onnx_inference(self, data, inputSize):
if hasattr(self, "onnx_session") == False or self.onnx_session == None:
print("[Voice Changer] No ONNX session.")
return np.zeros(1).astype(np.int16)
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x for x in data]
sid_tgt1 = torch.LongTensor([self.settings.dstId])
# if spec.size()[2] >= 8:
audio1 = self.onnx_session.run(
["audio"],
{
"specs": spec.numpy(),
"lengths": spec_lengths.numpy(),
"sid_src": sid_src.numpy(),
"sid_tgt": sid_tgt1.numpy()
})[0][0, 0] * self.hps.data.max_wav_value
if hasattr(self, 'np_prev_audio1') == True:
overlapSize = int(inputSize * self.settings.crossFadeOverlapRate)
prev_overlap = self.np_prev_audio1[-1 * overlapSize:]
cur_overlap = audio1[-1 * (inputSize + overlapSize):-1 * inputSize]
# print(prev_overlap.shape, self.np_prev_strength.shape, cur_overlap.shape, self.np_cur_strength.shape)
# print(">>>>>>>>>>>", -1*(inputSize + overlapSize) , -1*inputSize)
powered_prev = prev_overlap * self.np_prev_strength
powered_cur = cur_overlap * self.np_cur_strength
powered_result = powered_prev + powered_cur
cur = audio1[-1 * inputSize:-1 * overlapSize]
result = np.concatenate([powered_result, cur], axis=0)
else:
result = np.zeros(1).astype(np.int16)
self.np_prev_audio1 = audio1
return result
def _pyTorch_inference(self, data, inputSize):
if hasattr(self, "net_g") == False or self.net_g == None:
print("[Voice Changer] No pyTorch session.")
return np.zeros(1).astype(np.int16)
if self.settings.gpu < 0 or self.gpu_num == 0:
with torch.no_grad():
spec, spec_lengths, sid_src, sin, d = data
spec = spec.cpu()
spec_lengths = spec_lengths.cpu()
sid_src = sid_src.cpu()
sin = sin.cpu()
d = tuple([d[:1].cpu() for d in d])
sid_target = torch.LongTensor([self.settings.dstId]).cpu()
audio1 = self.net_g.cpu().voice_conversion(spec, spec_lengths, sin, d, sid_src, sid_target)[0, 0].data * self.hps.data.max_wav_value
if self.prev_strength.device != torch.device('cpu'):
print(f"prev_strength move from {self.prev_strength.device} to cpu")
self.prev_strength = self.prev_strength.cpu()
if self.cur_strength.device != torch.device('cpu'):
print(f"cur_strength move from {self.cur_strength.device} to cpu")
self.cur_strength = self.cur_strength.cpu()
if hasattr(self, 'prev_audio1') == True and self.prev_audio1.device == torch.device('cpu'): # prev_audio1が所望のデバイスに無い場合は一回休み。
overlapSize = int(inputSize * self.settings.crossFadeOverlapRate)
prev_overlap = self.prev_audio1[-1 * overlapSize:]
cur_overlap = audio1[-1 * (inputSize + overlapSize):-1 * inputSize]
powered_prev = prev_overlap * self.prev_strength
powered_cur = cur_overlap * self.cur_strength
powered_result = powered_prev + powered_cur
cur = audio1[-1 * inputSize:-1 * overlapSize] # 今回のインプットの生部分。(インプット - 次回のCrossfade部分)。
result = torch.cat([powered_result, cur], axis=0) # Crossfadeと今回のインプットの生部分を結合
else:
cur = audio1[-2 * inputSize:-1 * inputSize]
result = cur
self.prev_audio1 = audio1
result = result.cpu().float().numpy()
else:
with torch.no_grad():
spec, spec_lengths, sid_src, sin, d = data
spec = spec.cuda(self.settings.gpu)
spec_lengths = spec_lengths.cuda(self.settings.gpu)
sid_src = sid_src.cuda(self.settings.gpu)
sin = sin.cuda(self.settings.gpu)
d = tuple([d[:1].cuda(self.settings.gpu) for d in d])
sid_target = torch.LongTensor([self.settings.dstId]).cuda(self.settings.gpu)
# audio1 = self.net_g.cuda(self.settings.gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src,
# sid_tgt=sid_tgt1)[0, 0].data * self.hps.data.max_wav_value
audio1 = self.net_g.cuda(self.settings.gpu).voice_conversion(spec, spec_lengths, sin, d,
sid_src, sid_target)[0, 0].data * self.hps.data.max_wav_value
if self.prev_strength.device != torch.device('cuda', self.settings.gpu):
print(f"prev_strength move from {self.prev_strength.device} to gpu{self.settings.gpu}")
self.prev_strength = self.prev_strength.cuda(self.settings.gpu)
if self.cur_strength.device != torch.device('cuda', self.settings.gpu):
print(f"cur_strength move from {self.cur_strength.device} to gpu{self.settings.gpu}")
self.cur_strength = self.cur_strength.cuda(self.settings.gpu)
if hasattr(self, 'prev_audio1') == True and self.prev_audio1.device == torch.device('cuda', self.settings.gpu):
overlapSize = int(inputSize * self.settings.crossFadeOverlapRate)
prev_overlap = self.prev_audio1[-1 * overlapSize:]
cur_overlap = audio1[-1 * (inputSize + overlapSize):-1 * inputSize]
powered_prev = prev_overlap * self.prev_strength
powered_cur = cur_overlap * self.cur_strength
powered_result = powered_prev + powered_cur
cur = audio1[-1 * inputSize:-1 * overlapSize] # 今回のインプットの生部分。(インプット - 次回のCrossfade部分)。
result = torch.cat([powered_result, cur], axis=0) # Crossfadeと今回のインプットの生部分を結合
else:
cur = audio1[-2 * inputSize:-1 * inputSize]
result = cur
self.prev_audio1 = audio1
result = result.cpu().float().numpy()
return result
def on_request(self, unpackedData: any):
convertSize = self.settings.convertChunkNum * 128 # 128sample/1chunk
# print("convsize:", unpackedData.shape[0] * (1 + self.settings.crossFadeOverlapRate))
if unpackedData.shape[0] * (1 + self.settings.crossFadeOverlapRate) + 1024 > convertSize:
convertSize = int(unpackedData.shape[0] * (1 + self.settings.crossFadeOverlapRate)) + 1024
if convertSize < self.settings.minConvertSize:
convertSize = self.settings.minConvertSize
# print("convert Size", unpackedData.shape[0], unpackedData.shape[0]*(1 + self.settings.crossFadeOverlapRate), convertSize, self.settings.minConvertSize)
# convertSize = 8192
self._generate_strength(unpackedData)
# f0はデバッグ用
data, f0 = self._generate_input(unpackedData, convertSize)
try:
if self.settings.framework == "ONNX":
result = self._onnx_inference(data, unpackedData.shape[0])
else:
result = self._pyTorch_inference(data, unpackedData.shape[0])
except Exception as e:
print("VC PROCESSING!!!! EXCEPTION!!!", e)
print(traceback.format_exc())
if hasattr(self, "np_prev_audio1"):
del self.np_prev_audio1
if hasattr(self, "prev_audio1"):
del self.prev_audio1
return np.zeros(1).astype(np.int16)
result = result.astype(np.int16)
# print("on_request result size:",result.shape)
if self.settings.recordIO == 1:
self.stream_in.write(unpackedData.astype(np.int16).tobytes())
self.stream_out.write(result.tobytes())
return result
#########################################################################################
def overlap_merge(self, now_wav, prev_wav, overlap_length):
"""
生成したwavデータを前回生成したwavデータとoverlap_lengthだけ重ねてグラデーション的にマージします
終端のoverlap_lengthぶんは次回マージしてから再生するので削除します
Parameters
----------
now_wav: 今回生成した音声wavデータ
prev_wav: 前回生成した音声wavデータ
overlap_length: 重ねる長さ
"""
if overlap_length == 0:
return now_wav
gradation = np.arange(overlap_length) / overlap_length
now = np.frombuffer(now_wav, dtype='int16')
prev = np.frombuffer(prev_wav, dtype='int16')
now_head = now[:overlap_length]
prev_tail = prev[-overlap_length:]
print("merge params:", gradation.shape, now.shape, prev.shape, now_head.shape, prev_tail.shape)
merged = prev_tail * (np.cos(gradation * np.pi * 0.5) ** 2) + now_head * (np.cos((1 - gradation) * np.pi * 0.5) ** 2)
# merged = prev_tail * (1 - gradation) + now_head * gradation
overlapped = np.append(merged, now[overlap_length:-overlap_length])
signal = np.round(overlapped, decimals=0)
signal = signal.astype(np.int16)
# signal = signal.astype(np.int16).tobytes()
return signal
def on_request_(self, unpackedData: any):
self._generate_strength(unpackedData)
convertSize = 8192
unpackedData = unpackedData.astype(np.int16)
if hasattr(self, 'stored_raw_input') == False:
self.stored_raw_input = unpackedData
else:
self.stored_raw_input = np.concatenate([self.stored_raw_input, unpackedData])
self.stored_raw_input = self.stored_raw_input[-1 * (convertSize):]
processing_input = self.stored_raw_input
print("signal_shape1", unpackedData.shape, processing_input.shape, processing_input.dtype)
processing_input = processing_input / self.hps.data.max_wav_value
print("type:", processing_input.dtype)
_f0, _time = pw.dio(processing_input, self.hps.data.sampling_rate, frame_period=5.5)
f0 = pw.stonemask(processing_input, _f0, _time, self.hps.data.sampling_rate)
f0 = convert_continuos_f0(f0, int(processing_input.shape[0] / self.hps.data.hop_length))
f0 = torch.from_numpy(f0.astype(np.float32))
print("signal_shape2", f0.shape)
processing_input = torch.from_numpy(processing_input.astype(np.float32)).clone()
with torch.no_grad():
trans_length = processing_input.size()[0]
# spec, sid = get_audio_text_speaker_pair(signal.view(1, trans_length), Hyperparameters.SOURCE_ID)
processing_input_v = processing_input.view(1, trans_length) # unsqueezeと同じ
print("processing_input_v shape:", processing_input_v.shape)
spec = spectrogram_torch(processing_input_v, self.hps.data.filter_length,
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
center=False)
spec = torch.squeeze(spec, 0)
sid = torch.LongTensor([int(self.settings.srcId)])
dispose_stft_specs = 2
spec = spec[:, dispose_stft_specs:-dispose_stft_specs]
f0 = f0[dispose_stft_specs:-dispose_stft_specs]
print("spec shape:", spec.shape)
data = TextAudioSpeakerCollate(
sample_rate=self.hps.data.sampling_rate,
hop_size=self.hps.data.hop_length,
f0_factor=self.settings.f0Factor
)([(spec, sid, f0)])
if self.settings.gpu >= 0 or self.gpu_num > 0:
# spec, spec_lengths, sid_src, sin, d = [x.cuda(Hyperparameters.GPU_ID) for x in data]
spec, spec_lengths, sid_src, sin, d = data
spec = spec.cuda(self.settings.gpu)
spec_lengths = spec_lengths.cuda(self.settings.gpu)
sid_src = sid_src.cuda(self.settings.gpu)
sin = sin.cuda(self.settings.gpu)
d = tuple([d[:1].cuda(self.settings.gpu) for d in d])
sid_target = torch.LongTensor([self.settings.dstId]).cuda(self.settings.gpu)
audio = self.net_g.cuda(self.settings.gpu).voice_conversion(spec, spec_lengths,
sin, d, sid_src, sid_target)[0, 0].data.cpu().float().numpy()
else:
spec, spec_lengths, sid_src, sin, d = data
sid_target = torch.LongTensor([self.settings.dstId])
audio = self.net_g.voice_conversion(spec, spec_lengths, sin, d, sid_src, sid_target)[0, 0].data.cpu().float().numpy()
dispose_conv1d_length = 1280
audio = audio[dispose_conv1d_length:-dispose_conv1d_length]
audio = audio * self.hps.data.max_wav_value
audio = audio.astype(np.int16)
print("fin audio shape:", audio.shape)
audio = audio.tobytes()
if hasattr(self, "prev_audio"):
try:
audio1 = self.overlap_merge(audio, self.prev_audio, 1024)
except:
audio1 = np.zeros(1).astype(np.int16)
pass
# return np.zeros(1).astype(np.int16)
else:
audio1 = np.zeros(1).astype(np.int16)
self.prev_audio = audio
self.out.write(audio)
self.stream_in.write(unpackedData.tobytes())
# print(audio1)
return audio1
def __del__(self):
print("DESTRUCTOR")