voice-changer/server/voice_changer/MMVCv13/MMVCv13.py
2023-05-29 17:34:35 +09:00

296 lines
10 KiB
Python

import sys
import os
from voice_changer.utils.LoadModelParams import LoadModelParams
from voice_changer.utils.VoiceChangerModel import AudioInOut
if sys.platform.startswith("darwin"):
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
if len(baseDir) != 1:
print("baseDir should be only one ", baseDir)
sys.exit()
modulePath = os.path.join(baseDir[0], "MMVC_Client_v13", "python")
sys.path.append(modulePath)
else:
modulePath = os.path.join("MMVC_Client_v13", "python")
sys.path.append(modulePath)
from dataclasses import dataclass, asdict, field
import numpy as np
import torch
import onnxruntime
from symbols import symbols # type:ignore
from models import SynthesizerTrn # type:ignore
from voice_changer.MMVCv13.TrainerFunctions import (
TextAudioSpeakerCollate,
spectrogram_torch,
load_checkpoint,
get_hparams_from_file,
)
from Exceptions import NoModeLoadedException
@dataclass
class MMVCv13Settings:
gpu: int = 0
srcId: int = 0
dstId: int = 101
framework: str = "PyTorch" # PyTorch or ONNX
pyTorchModelFile: str = ""
onnxModelFile: str = ""
configFile: str = ""
# ↓mutableな物だけ列挙
intData = ["gpu", "srcId", "dstId"]
floatData: list[str] = field(default_factory=lambda: [])
strData = ["framework"]
class MMVCv13:
audio_buffer: AudioInOut | None = None
def __init__(self):
self.settings = MMVCv13Settings()
self.net_g = None
self.onnx_session = None
self.gpu_num = torch.cuda.device_count()
self.text_norm = torch.LongTensor([0, 6, 0])
def loadModel(self, props: LoadModelParams):
params = props.params
self.settings.configFile = params["files"]["mmvcv13Config"]
self.hps = get_hparams_from_file(self.settings.configFile)
modelFile = params["files"]["mmvcv13Model"]
if modelFile.endswith(".onnx"):
self.settings.pyTorchModelFile = None
self.settings.onnxModelFile = modelFile
else:
self.settings.pyTorchModelFile = modelFile
self.settings.onnxModelFile = None
# PyTorchモデル生成
if self.settings.pyTorchModelFile is not None:
self.net_g = SynthesizerTrn(
len(symbols),
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
n_speakers=self.hps.data.n_speakers,
**self.hps.model
)
self.net_g.eval()
load_checkpoint(self.settings.pyTorchModelFile, self.net_g, None)
# ONNXモデル生成
if self.settings.onnxModelFile is not None:
# ort_options = onnxruntime.SessionOptions()
# ort_options.intra_op_num_threads = 8
# ort_options.execution_mode = ort_options.ExecutionMode.ORT_PARALLEL
# ort_options.inter_op_num_threads = 8
providers, options = self.getOnnxExecutionProvider()
self.onnx_session = onnxruntime.InferenceSession(
self.settings.onnxModelFile,
providers=providers,
provider_options=options,
)
return self.get_info()
def getOnnxExecutionProvider(self):
availableProviders = onnxruntime.get_available_providers()
if self.settings.gpu >= 0 and "CUDAExecutionProvider" in availableProviders:
return ["CUDAExecutionProvider"], [{"device_id": self.settings.gpu}]
elif self.settings.gpu >= 0 and "DmlExecutionProvider" in availableProviders:
return ["DmlExecutionProvider"], [{}]
else:
return ["CPUExecutionProvider"], [
{
"intra_op_num_threads": 8,
"execution_mode": onnxruntime.ExecutionMode.ORT_PARALLEL,
"inter_op_num_threads": 8,
}
]
def isOnnx(self):
if self.settings.onnxModelFile is not None:
return True
else:
return False
def update_settings(self, key: str, val: int | float | str):
if key in self.settings.intData:
val = int(val)
setattr(self.settings, key, val)
if key == "gpu" and self.isOnnx():
providers, options = self.getOnnxExecutionProvider()
self.onnx_session = onnxruntime.InferenceSession(
self.settings.onnxModelFile,
providers=providers,
provider_options=options,
)
# providers = self.onnx_session.get_providers()
# print("Providers:", providers)
# if "CUDAExecutionProvider" in providers:
# provider_options = [{"device_id": self.settings.gpu}]
# self.onnx_session.set_providers(
# providers=["CUDAExecutionProvider"],
# provider_options=provider_options,
# )
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
else:
return False
return True
def get_info(self):
data = asdict(self.settings)
data["onnxExecutionProviders"] = (
self.onnx_session.get_providers() if self.onnx_session is not None else []
)
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
for f in files:
if data[f] is not None and os.path.exists(data[f]):
data[f] = os.path.basename(data[f])
else:
data[f] = ""
return data
def get_processing_sampling_rate(self):
if hasattr(self, "hps") is False:
raise NoModeLoadedException("config")
return self.hps.data.sampling_rate
def _get_spec(self, audio: AudioInOut):
spec = spectrogram_torch(
audio,
self.hps.data.filter_length,
self.hps.data.sampling_rate,
self.hps.data.hop_length,
self.hps.data.win_length,
center=False,
)
spec = torch.squeeze(spec, 0)
return spec
def generate_input(
self,
newData: AudioInOut,
inputSize: int,
crossfadeSize: int,
solaSearchFrame: int = 0,
):
newData = newData.astype(np.float32) / self.hps.data.max_wav_value
if self.audio_buffer is not None:
self.audio_buffer = np.concatenate(
[self.audio_buffer, newData], 0
) # 過去のデータに連結
else:
self.audio_buffer = newData
convertSize = inputSize + crossfadeSize + solaSearchFrame
# if convertSize < 8192:
# convertSize = 8192
if convertSize % self.hps.data.hop_length != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
convertSize = convertSize + (
self.hps.data.hop_length - (convertSize % self.hps.data.hop_length)
)
convertOffset = -1 * convertSize
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
audio = torch.FloatTensor(self.audio_buffer)
audio_norm = audio.unsqueeze(0) # unsqueeze
spec = self._get_spec(audio_norm)
sid = torch.LongTensor([int(self.settings.srcId)])
data = (self.text_norm, spec, audio_norm, sid)
data = TextAudioSpeakerCollate()([data])
return data
def _onnx_inference(self, data):
if hasattr(self, "onnx_session") is False or self.onnx_session is None:
print("[Voice Changer] No ONNX session.")
raise NoModeLoadedException("ONNX")
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x for x in data]
sid_tgt1 = torch.LongTensor([self.settings.dstId])
# if spec.size()[2] >= 8:
audio1 = (
self.onnx_session.run(
["audio"],
{
"specs": spec.numpy(),
"lengths": spec_lengths.numpy(),
"sid_src": sid_src.numpy(),
"sid_tgt": sid_tgt1.numpy(),
},
)[0][0, 0]
* self.hps.data.max_wav_value
)
return audio1
def _pyTorch_inference(self, data):
if hasattr(self, "net_g") is False or self.net_g is None:
print("[Voice Changer] No pyTorch session.")
raise NoModeLoadedException("pytorch")
if self.settings.gpu < 0 or self.gpu_num == 0:
dev = torch.device("cpu")
else:
dev = torch.device("cuda", index=self.settings.gpu)
with torch.no_grad():
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [
x.to(dev) for x in data
]
sid_target = torch.LongTensor([self.settings.dstId]).to(dev)
audio1 = (
self.net_g.to(dev)
.voice_conversion(
spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_target
)[0, 0]
.data
* self.hps.data.max_wav_value
)
result = audio1.float().cpu().numpy()
return result
def inference(self, data):
if self.isOnnx():
audio = self._onnx_inference(data)
else:
audio = self._pyTorch_inference(data)
return audio
def __del__(self):
del self.net_g
del self.onnx_session
remove_path = os.path.join("MMVC_Client_v13", "python")
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
for key in list(sys.modules):
val = sys.modules.get(key)
try:
file_path = val.__file__
if file_path.find(remove_path + os.path.sep) >= 0:
print("remove", key, file_path)
sys.modules.pop(key)
except: # type:ignore
pass