voice-changer/server/voice_changer/DDSP_SVC/DDSP_SVC.py
2023-05-31 14:30:35 +09:00

233 lines
8.1 KiB
Python

import sys
import os
from dataclasses import asdict
import numpy as np
import torch
from voice_changer.DDSP_SVC.ModelSlot import ModelSlot
from voice_changer.DDSP_SVC.deviceManager.DeviceManager import DeviceManager
if sys.platform.startswith("darwin"):
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
if len(baseDir) != 1:
print("baseDir should be only one ", baseDir)
sys.exit()
modulePath = os.path.join(baseDir[0], "DDSP-SVC")
sys.path.append(modulePath)
else:
sys.path.append("DDSP-SVC")
from diffusion.infer_gt_mel import DiffGtMel # type: ignore
from voice_changer.utils.VoiceChangerModel import AudioInOut
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
from voice_changer.utils.LoadModelParams import LoadModelParams
from voice_changer.DDSP_SVC.DDSP_SVCSetting import DDSP_SVCSettings
from voice_changer.RVC.embedder.EmbedderManager import EmbedderManager
# from Exceptions import NoModeLoadedException
from voice_changer.DDSP_SVC.SvcDDSP import SvcDDSP
def phase_vocoder(a, b, fade_out, fade_in):
fa = torch.fft.rfft(a)
fb = torch.fft.rfft(b)
absab = torch.abs(fa) + torch.abs(fb)
n = a.shape[0]
if n % 2 == 0:
absab[1:-1] *= 2
else:
absab[1:] *= 2
phia = torch.angle(fa)
phib = torch.angle(fb)
deltaphase = phib - phia
deltaphase = deltaphase - 2 * np.pi * torch.floor(deltaphase / 2 / np.pi + 0.5)
w = 2 * np.pi * torch.arange(n // 2 + 1).to(a) + deltaphase
t = torch.arange(n).unsqueeze(-1).to(a) / n
result = (
a * (fade_out**2)
+ b * (fade_in**2)
+ torch.sum(absab * torch.cos(w * t + phia), -1) * fade_out * fade_in / n
)
return result
class DDSP_SVC:
initialLoad: bool = True
settings: DDSP_SVCSettings = DDSP_SVCSettings()
diff_model: DiffGtMel = DiffGtMel()
svc_model: SvcDDSP = SvcDDSP()
deviceManager = DeviceManager.get_instance()
# diff_model: DiffGtMel = DiffGtMel()
audio_buffer: AudioInOut | None = None
prevVol: float = 0
# resample_kernel = {}
def __init__(self, params: VoiceChangerParams):
self.gpu_num = torch.cuda.device_count()
self.params = params
self.svc_model.setVCParams(params)
EmbedderManager.initialize(params)
print("[Voice Changer] DDSP-SVC initialization:", params)
def loadModel(self, props: LoadModelParams):
target_slot_idx = props.slot
params = props.params
modelFile = params["files"]["ddspSvcModel"]
diffusionFile = params["files"]["ddspSvcDiffusion"]
modelSlot = ModelSlot(
modelFile=modelFile,
diffusionFile=diffusionFile,
defaultTrans=params["trans"] if "trans" in params else 0,
)
self.settings.modelSlots[target_slot_idx] = modelSlot
# 初回のみロード
# if self.initialLoad:
# self.prepareModel(target_slot_idx)
# self.settings.modelSlotIndex = target_slot_idx
# self.switchModel()
# self.initialLoad = False
# elif target_slot_idx == self.currentSlot:
# self.prepareModel(target_slot_idx)
self.settings.modelSlotIndex = target_slot_idx
self.reloadModel()
print("params:", params)
return self.get_info()
def reloadModel(self):
self.device = self.deviceManager.getDevice(self.settings.gpu)
modelFile = self.settings.modelSlots[self.settings.modelSlotIndex].modelFile
diffusionFile = self.settings.modelSlots[
self.settings.modelSlotIndex
].diffusionFile
self.svc_model = SvcDDSP()
self.svc_model.setVCParams(self.params)
self.svc_model.update_model(modelFile, self.device)
self.diff_model = DiffGtMel(device=self.device)
self.diff_model.flush_model(diffusionFile, ddsp_config=self.svc_model.args)
def update_settings(self, key: str, val: int | float | str):
if key in self.settings.intData:
val = int(val)
setattr(self.settings, key, val)
if key == "gpu":
self.reloadModel()
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
else:
return False
return True
def get_info(self):
data = asdict(self.settings)
return data
def get_processing_sampling_rate(self):
return self.svc_model.args.data.sampling_rate
def generate_input(
self,
newData: AudioInOut,
inputSize: int,
crossfadeSize: int,
solaSearchFrame: int = 0,
):
newData = newData.astype(np.float32) / 32768.0
# newData = newData.astype(np.float32)
if self.audio_buffer is not None:
self.audio_buffer = np.concatenate(
[self.audio_buffer, newData], 0
) # 過去のデータに連結
else:
self.audio_buffer = newData
convertSize = (
inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize
)
# if convertSize % self.hop_size != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
# convertSize = convertSize + (self.hop_size - (convertSize % self.hop_size))
convertOffset = -1 * convertSize
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
return (self.audio_buffer,)
# def _onnx_inference(self, data):
# if hasattr(self, "onnx_session") is False or self.onnx_session is None:
# print("[Voice Changer] No onnx session.")
# raise NoModeLoadedException("ONNX")
# raise NoModeLoadedException("ONNX")
def _pyTorch_inference(self, data):
# if hasattr(self, "model") is False or self.model is None:
# print("[Voice Changer] No pyTorch session.")
# raise NoModeLoadedException("pytorch")
input_wav = data[0]
_audio, _model_sr = self.svc_model.infer(
input_wav,
self.svc_model.args.data.sampling_rate,
spk_id=self.settings.dstId,
threhold=self.settings.threshold,
pitch_adjust=self.settings.tran,
use_spk_mix=False,
spk_mix_dict=None,
use_enhancer=True if self.settings.useEnhancer == 1 else False,
pitch_extractor_type=self.settings.f0Detector,
f0_min=50,
f0_max=1100,
# safe_prefix_pad_length=0, # TBD なにこれ?
safe_prefix_pad_length=self.settings.extraConvertSize
/ self.svc_model.args.data.sampling_rate,
diff_model=self.diff_model,
diff_acc=self.settings.diffAcc, # TBD なにこれ?
diff_spk_id=self.settings.diffSpkId,
diff_use=True if self.settings.useDiff == 1 else False,
# diff_use_dpm=True if self.settings.useDiffDpm == 1 else False, # TBD なにこれ?
method=self.settings.diffMethod,
k_step=self.settings.kStep, # TBD なにこれ?
diff_silence=True
if self.settings.useDiffSilence == 1
else False, # TBD なにこれ?
)
return _audio.cpu().numpy() * 32768.0
def inference(self, data):
if self.settings.framework == "ONNX":
audio = self._onnx_inference(data)
else:
audio = self._pyTorch_inference(data)
return audio
# def destroy(self):
# del self.net_g
# del self.onnx_session
def __del__(self):
del self.net_g
del self.onnx_session
remove_path = os.path.join("DDSP-SVC")
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
for key in list(sys.modules):
val = sys.modules.get(key)
try:
file_path = val.__file__
if file_path.find("DDSP-SVC" + os.path.sep) >= 0:
# print("remove", key, file_path)
sys.modules.pop(key)
except: # type:ignore
pass