voice-changer/server/voice_changer/RVC/pipeline/Pipeline.py
2023-05-31 14:30:35 +09:00

209 lines
6.5 KiB
Python

import numpy as np
from typing import Any
import torch
import torch.nn.functional as F
from Exceptions import (
DeviceChangingException,
HalfPrecisionChangingException,
NotEnoughDataExtimateF0,
)
from voice_changer.RVC.embedder.Embedder import Embedder
from voice_changer.RVC.inferencer.Inferencer import Inferencer
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
# isHalfが変わる場合はPipeline作り直し
# device(GPU, isHalf変更が伴わない場合), pitchExtractorの変更は、入れ替えで対応
class Pipeline(object):
embedder: Embedder
inferencer: Inferencer
pitchExtractor: PitchExtractor
index: Any | None
big_npy: Any | None
# feature: Any | None
targetSR: int
device: torch.device
isHalf: bool
def __init__(
self,
embedder: Embedder,
inferencer: Inferencer,
pitchExtractor: PitchExtractor,
index: Any | None,
# feature: Any | None,
targetSR,
device,
isHalf,
):
self.embedder = embedder
self.inferencer = inferencer
self.pitchExtractor = pitchExtractor
self.index = index
self.big_npy = (
index.reconstruct_n(0, index.ntotal) if index is not None else None
)
# self.feature = feature
self.targetSR = targetSR
self.device = device
self.isHalf = isHalf
self.sr = 16000
self.window = 160
def getPipelineInfo(self):
inferencerInfo = self.inferencer.getInferencerInfo() if self.inferencer else {}
embedderInfo = self.embedder.getEmbedderInfo()
pitchExtractorInfo = self.pitchExtractor.getPitchExtractorInfo()
return {
"inferencer": inferencerInfo,
"embedder": embedderInfo,
"pitchExtractor": pitchExtractorInfo,
}
def setPitchExtractor(self, pitchExtractor: PitchExtractor):
self.pitchExtractor = pitchExtractor
def exec(
self,
sid,
audio,
f0_up_key,
index_rate,
if_f0,
silence_front,
embOutputLayer,
useFinalProj,
repeat,
):
self.t_pad = self.sr * repeat
self.t_pad_tgt = self.targetSR * repeat
audio_pad = F.pad(
audio.unsqueeze(0), (self.t_pad, self.t_pad), mode="reflect"
).squeeze(0)
p_len = audio_pad.shape[0] // self.window
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
# ピッチ検出
pitch, pitchf = None, None
try:
if if_f0 == 1:
pitch, pitchf = self.pitchExtractor.extract(
audio_pad,
f0_up_key,
self.sr,
self.window,
silence_front=silence_front,
)
pitch = pitch[:p_len]
pitchf = pitchf[:p_len]
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
pitchf = torch.tensor(
pitchf, device=self.device, dtype=torch.float
).unsqueeze(0)
except IndexError:
# print(e)
raise NotEnoughDataExtimateF0()
# tensor型調整
feats = audio_pad
if self.isHalf is True:
feats = feats.half()
else:
feats = feats.float()
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
# embedding
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
try:
feats = self.embedder.extractFeatures(feats, embOutputLayer, useFinalProj)
except RuntimeError as e:
if "HALF" in e.__str__().upper():
raise HalfPrecisionChangingException()
elif "same device" in e.__str__():
raise DeviceChangingException()
else:
raise e
# Index - feature抽出
# if self.index is not None and self.feature is not None and index_rate != 0:
if self.index is not None and self.big_npy is not None and index_rate != 0:
npy = feats[0].cpu().numpy()
if self.isHalf is True:
npy = npy.astype("float32")
# D, I = self.index.search(npy, 1)
# npy = self.feature[I.squeeze()]
# TODO: kは調整できるようにする
k = 1
if k == 1:
_, ix = self.index.search(npy, 1)
npy = self.big_npy[ix.squeeze()]
else:
score, ix = self.index.search(npy, k=8)
weight = np.square(1 / score)
weight /= weight.sum(axis=1, keepdims=True)
npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
if self.isHalf is True:
npy = npy.astype("float16")
feats = (
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
+ (1 - index_rate) * feats
)
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
# ピッチサイズ調整
p_len = audio_pad.shape[0] // self.window
if feats.shape[1] < p_len:
p_len = feats.shape[1]
if pitch is not None and pitchf is not None:
pitch = pitch[:, :p_len]
pitchf = pitchf[:, :p_len]
p_len = torch.tensor([p_len], device=self.device).long()
# 推論実行
try:
with torch.no_grad():
audio1 = (
torch.clip(
self.inferencer.infer(feats, p_len, pitch, pitchf, sid)[0][
0, 0
].to(dtype=torch.float32),
-1.0,
1.0,
)
* 32767.5
- 0.5
).data.to(dtype=torch.int16)
except RuntimeError as e:
if "HALF" in e.__str__().upper():
raise HalfPrecisionChangingException()
else:
raise e
del feats, p_len, padding_mask
torch.cuda.empty_cache()
if self.t_pad_tgt != 0:
offset = self.t_pad_tgt
end = -1 * self.t_pad_tgt
audio1 = audio1[offset:end]
del pitch, pitchf, sid
torch.cuda.empty_cache()
return audio1