mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 21:45:00 +03:00
144 lines
5.2 KiB
Python
Executable File
144 lines
5.2 KiB
Python
Executable File
from flask import Flask, request, Markup, abort, jsonify, send_from_directory
|
|
from flask_cors import CORS
|
|
import logging
|
|
from logging.config import dictConfig
|
|
import sys
|
|
import base64
|
|
|
|
import torch
|
|
import numpy as np
|
|
from scipy.io.wavfile import write, read
|
|
from datetime import datetime
|
|
|
|
import traceback
|
|
import struct
|
|
|
|
sys.path.append("mod")
|
|
sys.path.append("mod/text")
|
|
|
|
import utils
|
|
from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
|
from models import SynthesizerTrn
|
|
from text.symbols import symbols
|
|
|
|
dictConfig({
|
|
'version': 1,
|
|
'formatters': {'default': {
|
|
'format': '[%(asctime)s] %(levelname)s in %(module)s: %(message)s',
|
|
}},
|
|
'handlers': {'wsgi': {
|
|
'class': 'logging.StreamHandler',
|
|
'stream': 'ext://flask.logging.wsgi_errors_stream',
|
|
'formatter': 'default'
|
|
}},
|
|
'root': {
|
|
'level': 'INFO',
|
|
'handlers': ['wsgi']
|
|
}
|
|
})
|
|
|
|
app = Flask(__name__)
|
|
@app.route("/<path:path>")
|
|
def static_dir(path):
|
|
return send_from_directory("../frontend/dist", path)
|
|
|
|
@app.route('/', methods=['GET'])
|
|
def redirect_to_index():
|
|
return send_from_directory("../frontend/dist", 'index.html')
|
|
|
|
CORS(app, resources={r"/*": {"origins": "*"}})
|
|
|
|
class VoiceChanger():
|
|
def __init__(self, config, model):
|
|
self.hps =utils.get_hparams_from_file(config)
|
|
self.net_g = SynthesizerTrn(
|
|
len(symbols),
|
|
self.hps.data.filter_length // 2 + 1,
|
|
self.hps.train.segment_size // self.hps.data.hop_length,
|
|
n_speakers=self.hps.data.n_speakers,
|
|
**self.hps.model)
|
|
self.net_g.eval()
|
|
self.gpu_num = torch.cuda.device_count()
|
|
print("GPU_NUM:",self.gpu_num)
|
|
utils.load_checkpoint( model, self.net_g, None)
|
|
|
|
|
|
def on_request(self, gpu, srcId, dstId, timestamp, wav):
|
|
if wav==0:
|
|
samplerate, data=read("dummy.wav")
|
|
unpackedData = data
|
|
else:
|
|
unpackedData = np.array(struct.unpack('<%sh'%(len(wav) // struct.calcsize('<h') ), wav))
|
|
write("logs/received_data.wav", 24000, unpackedData.astype(np.int16))
|
|
|
|
try:
|
|
if gpu<0 or self.gpu_num==0 :
|
|
with torch.no_grad():
|
|
dataset = TextAudioSpeakerLoader("dummy.txt", self.hps.data, no_use_textfile=True)
|
|
data = dataset.get_audio_text_speaker_pair([ unpackedData, srcId, "a"])
|
|
data = TextAudioSpeakerCollate()([data])
|
|
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cpu() for x in data]
|
|
sid_tgt1 = torch.LongTensor([dstId]).cpu()
|
|
audio1 = (self.net_g.cpu().voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy()
|
|
else:
|
|
with torch.no_grad():
|
|
dataset = TextAudioSpeakerLoader("dummy.txt", self.hps.data, no_use_textfile=True)
|
|
data = dataset.get_audio_text_speaker_pair([ unpackedData, srcId, "a"])
|
|
data = TextAudioSpeakerCollate()([data])
|
|
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda(gpu) for x in data]
|
|
sid_tgt1 = torch.LongTensor([dstId]).cuda(gpu)
|
|
audio1 = (self.net_g.cuda(gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy()
|
|
except Exception as e:
|
|
print("VC PROCESSING!!!! EXCEPTION!!!", e)
|
|
print(traceback.format_exc())
|
|
|
|
audio1 = audio1.astype(np.int16)
|
|
return audio1
|
|
|
|
|
|
|
|
@app.route('/test', methods=['GET', 'POST'])
|
|
def test():
|
|
try:
|
|
if request.method == 'GET':
|
|
return request.args.get('query', '')
|
|
elif request.method == 'POST':
|
|
print("POST REQUEST PROCESSING....")
|
|
gpu = int(request.json['gpu'])
|
|
srcId = int(request.json['srcId'])
|
|
dstId = int(request.json['dstId'])
|
|
timestamp = int(request.json['timestamp'])
|
|
buffer = request.json['buffer']
|
|
wav = base64.b64decode(buffer)
|
|
# print(wav)
|
|
# print(base64.b64encode(wav))
|
|
changedVoice = voiceChanger.on_request(gpu, srcId, dstId, timestamp, wav)
|
|
changedVoiceBase64 = base64.b64encode(changedVoice).decode('utf-8')
|
|
# print("changedVoice",changedVoice)
|
|
# print("CV64",changedVoiceBase64)
|
|
data = {
|
|
"gpu":gpu,
|
|
"srcId":srcId,
|
|
"dstId":dstId,
|
|
"timestamp":timestamp,
|
|
"changedVoiceBase64":changedVoiceBase64
|
|
}
|
|
return jsonify(data)
|
|
else:
|
|
return abort(400)
|
|
except Exception as e:
|
|
print("REQUEST PROCESSING!!!! EXCEPTION!!!", e)
|
|
print(traceback.format_exc())
|
|
return str(e)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = sys.argv
|
|
PORT = args[1]
|
|
CONFIG = args[2]
|
|
MODEL = args[3]
|
|
app.logger.info('INITIALIZE MODEL')
|
|
voiceChanger = VoiceChanger(CONFIG, MODEL)
|
|
voiceChanger.on_request(0,0,0,0,0)
|
|
app.logger.info('START APP')
|
|
app.run(debug=True, host='0.0.0.0',port=PORT) |