mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-24 05:55:01 +03:00
466 lines
15 KiB
Python
466 lines
15 KiB
Python
import sys
|
|
import os
|
|
|
|
from voice_changer.utils.LoadModelParams import LoadModelParams
|
|
from voice_changer.utils.VoiceChangerModel import AudioInOut
|
|
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
|
|
|
|
if sys.platform.startswith("darwin"):
|
|
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
|
|
if len(baseDir) != 1:
|
|
print("baseDir should be only one ", baseDir)
|
|
sys.exit()
|
|
modulePath = os.path.join(baseDir[0], "so-vits-svc-40v2")
|
|
sys.path.append(modulePath)
|
|
else:
|
|
sys.path.append("so-vits-svc-40v2")
|
|
|
|
import io
|
|
from dataclasses import dataclass, asdict, field
|
|
import numpy as np
|
|
import torch
|
|
import onnxruntime
|
|
import pyworld as pw
|
|
|
|
from models import SynthesizerTrn # type:ignore
|
|
import cluster # type:ignore
|
|
import utils
|
|
from fairseq import checkpoint_utils
|
|
import librosa
|
|
|
|
from Exceptions import NoModeLoadedException
|
|
|
|
providers = [
|
|
"OpenVINOExecutionProvider",
|
|
"CUDAExecutionProvider",
|
|
"DmlExecutionProvider",
|
|
"CPUExecutionProvider",
|
|
]
|
|
|
|
|
|
@dataclass
|
|
class SoVitsSvc40v2Settings:
|
|
gpu: int = 0
|
|
dstId: int = 0
|
|
|
|
f0Detector: str = "harvest" # dio or harvest
|
|
tran: int = 20
|
|
noiseScale: float = 0.3
|
|
predictF0: int = 0 # 0:False, 1:True
|
|
silentThreshold: float = 0.00001
|
|
extraConvertSize: int = 1024 * 32
|
|
clusterInferRatio: float = 0.1
|
|
|
|
framework: str = "PyTorch" # PyTorch or ONNX
|
|
pyTorchModelFile: str | None = ""
|
|
onnxModelFile: str | None = ""
|
|
configFile: str = ""
|
|
|
|
speakers: dict[str, int] = field(default_factory=lambda: {})
|
|
|
|
# ↓mutableな物だけ列挙
|
|
intData = ["gpu", "dstId", "tran", "predictF0", "extraConvertSize"]
|
|
floatData = ["noiseScale", "silentThreshold", "clusterInferRatio"]
|
|
strData = ["framework", "f0Detector"]
|
|
|
|
|
|
class SoVitsSvc40v2:
|
|
audio_buffer: AudioInOut | None = None
|
|
|
|
def __init__(self, params: VoiceChangerParams):
|
|
self.settings = SoVitsSvc40v2Settings()
|
|
self.net_g = None
|
|
self.onnx_session = None
|
|
|
|
self.raw_path = io.BytesIO()
|
|
self.gpu_num = torch.cuda.device_count()
|
|
self.prevVol = 0
|
|
self.params = params
|
|
print("so-vits-svc 40v2 initialization:", params)
|
|
|
|
def loadModel(self, props: LoadModelParams):
|
|
params = props.params
|
|
self.settings.configFile = params["files"]["soVitsSvc40v2Config"]
|
|
self.hps = utils.get_hparams_from_file(self.settings.configFile)
|
|
self.settings.speakers = self.hps.spk
|
|
|
|
modelFile = params["files"]["soVitsSvc40v2Model"]
|
|
if modelFile.endswith(".onnx"):
|
|
self.settings.pyTorchModelFile = None
|
|
self.settings.onnxModelFile = modelFile
|
|
else:
|
|
self.settings.pyTorchModelFile = modelFile
|
|
self.settings.onnxModelFile = None
|
|
|
|
clusterTorchModel = params["files"]["soVitsSvc40v2Cluster"]
|
|
|
|
content_vec_path = self.params.content_vec_500
|
|
hubert_base_path = self.params.hubert_base
|
|
|
|
# hubert model
|
|
try:
|
|
if os.path.exists(content_vec_path) is False:
|
|
content_vec_path = hubert_base_path
|
|
|
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
|
[content_vec_path],
|
|
suffix="",
|
|
)
|
|
model = models[0]
|
|
model.eval()
|
|
self.hubert_model = model.cpu()
|
|
except Exception as e:
|
|
print("EXCEPTION during loading hubert/contentvec model", e)
|
|
|
|
# cluster
|
|
try:
|
|
if clusterTorchModel is not None and os.path.exists(clusterTorchModel):
|
|
self.cluster_model = cluster.get_cluster_model(clusterTorchModel)
|
|
else:
|
|
self.cluster_model = None
|
|
except Exception as e:
|
|
print("EXCEPTION during loading cluster model ", e)
|
|
|
|
# PyTorchモデル生成
|
|
if self.settings.pyTorchModelFile is not None:
|
|
net_g = SynthesizerTrn(self.hps)
|
|
net_g.eval()
|
|
self.net_g = net_g
|
|
utils.load_checkpoint(self.settings.pyTorchModelFile, self.net_g, None)
|
|
|
|
# ONNXモデル生成
|
|
if self.settings.onnxModelFile is not None:
|
|
providers, options = self.getOnnxExecutionProvider()
|
|
self.onnx_session = onnxruntime.InferenceSession(
|
|
self.settings.onnxModelFile,
|
|
providers=providers,
|
|
provider_options=options,
|
|
)
|
|
return self.get_info()
|
|
|
|
def getOnnxExecutionProvider(self):
|
|
if self.settings.gpu >= 0:
|
|
return ["CUDAExecutionProvider"], [{"device_id": self.settings.gpu}]
|
|
elif "DmlExecutionProvider" in onnxruntime.get_available_providers():
|
|
return ["DmlExecutionProvider"], []
|
|
else:
|
|
return ["CPUExecutionProvider"], [
|
|
{
|
|
"intra_op_num_threads": 8,
|
|
"execution_mode": onnxruntime.ExecutionMode.ORT_PARALLEL,
|
|
"inter_op_num_threads": 8,
|
|
}
|
|
]
|
|
|
|
def isOnnx(self):
|
|
if self.settings.onnxModelFile is not None:
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def update_settings(self, key: str, val: int | float | str):
|
|
if key in self.settings.intData:
|
|
val = int(val)
|
|
setattr(self.settings, key, val)
|
|
|
|
if key == "gpu" and self.isOnnx():
|
|
providers, options = self.getOnnxExecutionProvider()
|
|
if self.onnx_session is not None:
|
|
self.onnx_session.set_providers(
|
|
providers=providers,
|
|
provider_options=options,
|
|
)
|
|
elif key in self.settings.floatData:
|
|
setattr(self.settings, key, float(val))
|
|
elif key in self.settings.strData:
|
|
setattr(self.settings, key, str(val))
|
|
else:
|
|
return False
|
|
|
|
return True
|
|
|
|
def get_info(self):
|
|
data = asdict(self.settings)
|
|
|
|
data["onnxExecutionProviders"] = (
|
|
self.onnx_session.get_providers() if self.onnx_session is not None else []
|
|
)
|
|
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
|
for f in files:
|
|
if data[f] is not None and os.path.exists(data[f]):
|
|
data[f] = os.path.basename(data[f])
|
|
else:
|
|
data[f] = ""
|
|
|
|
return data
|
|
|
|
def get_processing_sampling_rate(self):
|
|
if hasattr(self, "hps") is False:
|
|
raise NoModeLoadedException("config")
|
|
return self.hps.data.sampling_rate
|
|
|
|
def get_unit_f0(self, audio_buffer, tran):
|
|
wav_44k = audio_buffer
|
|
# f0 = utils.compute_f0_parselmouth(wav, sampling_rate=self.target_sample, hop_length=self.hop_size)
|
|
# f0 = utils.compute_f0_dio(wav_44k, sampling_rate=self.hps.data.sampling_rate, hop_length=self.hps.data.hop_length)
|
|
if self.settings.f0Detector == "dio":
|
|
f0 = compute_f0_dio(
|
|
wav_44k,
|
|
sampling_rate=self.hps.data.sampling_rate,
|
|
hop_length=self.hps.data.hop_length,
|
|
)
|
|
else:
|
|
f0 = compute_f0_harvest(
|
|
wav_44k,
|
|
sampling_rate=self.hps.data.sampling_rate,
|
|
hop_length=self.hps.data.hop_length,
|
|
)
|
|
|
|
if wav_44k.shape[0] % self.hps.data.hop_length != 0:
|
|
print(
|
|
f" !!! !!! !!! wav size not multiple of hopsize: {wav_44k.shape[0] / self.hps.data.hop_length}"
|
|
)
|
|
|
|
f0, uv = utils.interpolate_f0(f0)
|
|
f0 = torch.FloatTensor(f0)
|
|
uv = torch.FloatTensor(uv)
|
|
f0 = f0 * 2 ** (tran / 12)
|
|
f0 = f0.unsqueeze(0)
|
|
uv = uv.unsqueeze(0)
|
|
|
|
# wav16k = librosa.resample(audio_buffer, orig_sr=24000, target_sr=16000)
|
|
wav16k = librosa.resample(
|
|
audio_buffer, orig_sr=self.hps.data.sampling_rate, target_sr=16000
|
|
)
|
|
wav16k = torch.from_numpy(wav16k)
|
|
|
|
if (
|
|
self.settings.gpu < 0 or self.gpu_num == 0
|
|
) or self.settings.framework == "ONNX":
|
|
dev = torch.device("cpu")
|
|
else:
|
|
dev = torch.device("cuda", index=self.settings.gpu)
|
|
|
|
self.hubert_model = self.hubert_model.to(dev)
|
|
wav16k = wav16k.to(dev)
|
|
uv = uv.to(dev)
|
|
f0 = f0.to(dev)
|
|
|
|
c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k)
|
|
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
|
|
|
|
if (
|
|
self.settings.clusterInferRatio != 0
|
|
and hasattr(self, "cluster_model")
|
|
and self.cluster_model is not None
|
|
):
|
|
speaker = [
|
|
key
|
|
for key, value in self.settings.speakers.items()
|
|
if value == self.settings.dstId
|
|
]
|
|
if len(speaker) != 1:
|
|
pass
|
|
# print("not only one speaker found.", speaker)
|
|
else:
|
|
cluster_c = cluster.get_cluster_center_result(
|
|
self.cluster_model, c.cpu().numpy().T, speaker[0]
|
|
).T
|
|
# cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, self.settings.dstId).T
|
|
cluster_c = torch.FloatTensor(cluster_c).to(dev)
|
|
# print("cluster DEVICE", cluster_c.device, c.device)
|
|
c = (
|
|
self.settings.clusterInferRatio * cluster_c
|
|
+ (1 - self.settings.clusterInferRatio) * c
|
|
)
|
|
|
|
c = c.unsqueeze(0)
|
|
return c, f0, uv
|
|
|
|
def generate_input(
|
|
self,
|
|
newData: AudioInOut,
|
|
inputSize: int,
|
|
crossfadeSize: int,
|
|
solaSearchFrame: int = 0,
|
|
):
|
|
newData = newData.astype(np.float32) / self.hps.data.max_wav_value
|
|
|
|
if self.audio_buffer is not None:
|
|
self.audio_buffer = np.concatenate(
|
|
[self.audio_buffer, newData], 0
|
|
) # 過去のデータに連結
|
|
else:
|
|
self.audio_buffer = newData
|
|
|
|
convertSize = (
|
|
inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize
|
|
)
|
|
|
|
if convertSize % self.hps.data.hop_length != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
|
convertSize = convertSize + (
|
|
self.hps.data.hop_length - (convertSize % self.hps.data.hop_length)
|
|
)
|
|
convertOffset = -1 * convertSize
|
|
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
|
|
|
|
cropOffset = -1 * (inputSize + crossfadeSize)
|
|
cropEnd = -1 * (crossfadeSize)
|
|
crop = self.audio_buffer[cropOffset:cropEnd]
|
|
|
|
rms = np.sqrt(np.square(crop).mean(axis=0))
|
|
vol = max(rms, self.prevVol * 0.0)
|
|
self.prevVol = vol
|
|
|
|
c, f0, uv = self.get_unit_f0(self.audio_buffer, self.settings.tran)
|
|
return (c, f0, uv, convertSize, vol)
|
|
|
|
def _onnx_inference(self, data):
|
|
if hasattr(self, "onnx_session") is False or self.onnx_session is None:
|
|
print("[Voice Changer] No onnx session.")
|
|
raise NoModeLoadedException("ONNX")
|
|
|
|
convertSize = data[3]
|
|
vol = data[4]
|
|
data = (
|
|
data[0],
|
|
data[1],
|
|
data[2],
|
|
)
|
|
|
|
if vol < self.settings.silentThreshold:
|
|
return np.zeros(convertSize).astype(np.int16)
|
|
|
|
c, f0, uv = [x.numpy() for x in data]
|
|
audio1 = (
|
|
self.onnx_session.run(
|
|
["audio"],
|
|
{
|
|
"c": c,
|
|
"f0": f0,
|
|
"g": np.array([self.settings.dstId]).astype(np.int64),
|
|
"uv": np.array([self.settings.dstId]).astype(np.int64),
|
|
"predict_f0": np.array([self.settings.dstId]).astype(np.int64),
|
|
"noice_scale": np.array([self.settings.dstId]).astype(np.int64),
|
|
},
|
|
)[0][0, 0]
|
|
* self.hps.data.max_wav_value
|
|
)
|
|
|
|
audio1 = audio1 * vol
|
|
|
|
result = audio1
|
|
|
|
return result
|
|
|
|
def _pyTorch_inference(self, data):
|
|
if hasattr(self, "net_g") is False or self.net_g is None:
|
|
print("[Voice Changer] No pyTorch session.")
|
|
raise NoModeLoadedException("pytorch")
|
|
|
|
if self.settings.gpu < 0 or self.gpu_num == 0:
|
|
dev = torch.device("cpu")
|
|
else:
|
|
dev = torch.device("cuda", index=self.settings.gpu)
|
|
|
|
convertSize = data[3]
|
|
vol = data[4]
|
|
data = (
|
|
data[0],
|
|
data[1],
|
|
data[2],
|
|
)
|
|
|
|
if vol < self.settings.silentThreshold:
|
|
return np.zeros(convertSize).astype(np.int16)
|
|
|
|
with torch.no_grad():
|
|
c, f0, uv = [x.to(dev) for x in data]
|
|
sid_target = torch.LongTensor([self.settings.dstId]).to(dev)
|
|
self.net_g.to(dev)
|
|
# audio1 = self.net_g.infer(c, f0=f0, g=sid_target, uv=uv, predict_f0=True, noice_scale=0.1)[0][0, 0].data.float()
|
|
predict_f0_flag = True if self.settings.predictF0 == 1 else False
|
|
audio1 = self.net_g.infer(
|
|
c,
|
|
f0=f0,
|
|
g=sid_target,
|
|
uv=uv,
|
|
predict_f0=predict_f0_flag,
|
|
noice_scale=self.settings.noiseScale,
|
|
)[0][0, 0].data.float()
|
|
audio1 = audio1 * self.hps.data.max_wav_value
|
|
|
|
audio1 = audio1 * vol
|
|
|
|
result = audio1.float().cpu().numpy()
|
|
|
|
# result = infer_tool.pad_array(result, length)
|
|
return result
|
|
|
|
def inference(self, data):
|
|
if self.isOnnx():
|
|
audio = self._onnx_inference(data)
|
|
else:
|
|
audio = self._pyTorch_inference(data)
|
|
return audio
|
|
|
|
def __del__(self):
|
|
del self.net_g
|
|
del self.onnx_session
|
|
|
|
remove_path = os.path.join("so-vits-svc-40v2")
|
|
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
|
|
|
|
for key in list(sys.modules):
|
|
val = sys.modules.get(key)
|
|
try:
|
|
file_path = val.__file__
|
|
if file_path.find("so-vits-svc-40v2" + os.path.sep) >= 0:
|
|
print("remove", key, file_path)
|
|
sys.modules.pop(key)
|
|
except: # type:ignore
|
|
pass
|
|
|
|
|
|
def resize_f0(x, target_len):
|
|
source = np.array(x)
|
|
source[source < 0.001] = np.nan
|
|
target = np.interp(
|
|
np.arange(0, len(source) * target_len, len(source)) / target_len,
|
|
np.arange(0, len(source)),
|
|
source,
|
|
)
|
|
res = np.nan_to_num(target)
|
|
return res
|
|
|
|
|
|
def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
|
|
if p_len is None:
|
|
p_len = wav_numpy.shape[0] // hop_length
|
|
f0, t = pw.dio(
|
|
wav_numpy.astype(np.double),
|
|
fs=sampling_rate,
|
|
f0_ceil=800,
|
|
frame_period=1000 * hop_length / sampling_rate,
|
|
)
|
|
f0 = pw.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
|
|
for index, pitch in enumerate(f0):
|
|
f0[index] = round(pitch, 1)
|
|
return resize_f0(f0, p_len)
|
|
|
|
|
|
def compute_f0_harvest(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
|
|
if p_len is None:
|
|
p_len = wav_numpy.shape[0] // hop_length
|
|
f0, t = pw.harvest(
|
|
wav_numpy.astype(np.double),
|
|
fs=sampling_rate,
|
|
frame_period=5.5,
|
|
f0_floor=71.0,
|
|
f0_ceil=1000.0,
|
|
)
|
|
|
|
for index, pitch in enumerate(f0):
|
|
f0[index] = round(pitch, 1)
|
|
return resize_f0(f0, p_len)
|