mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 21:45:00 +03:00
266 lines
10 KiB
Python
266 lines
10 KiB
Python
import sys
|
|
import os
|
|
if sys.platform.startswith('darwin'):
|
|
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
|
|
if len(baseDir) != 1:
|
|
print("baseDir should be only one ", baseDir)
|
|
sys.exit()
|
|
modulePath = os.path.join(baseDir[0], "MMVC_Client_v15", "python")
|
|
sys.path.append(modulePath)
|
|
else:
|
|
modulePath = os.path.join("MMVC_Client_v15", "python")
|
|
sys.path.append(modulePath)
|
|
|
|
from dataclasses import dataclass, asdict
|
|
import numpy as np
|
|
import torch
|
|
import onnxruntime
|
|
import pyworld as pw
|
|
|
|
from models import SynthesizerTrn
|
|
from voice_changer.MMVCv15.client_modules import convert_continuos_f0, spectrogram_torch, get_hparams_from_file, load_checkpoint
|
|
|
|
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
|
|
|
|
|
@dataclass
|
|
class MMVCv15Settings():
|
|
gpu: int = 0
|
|
srcId: int = 0
|
|
dstId: int = 101
|
|
|
|
f0Factor: float = 1.0
|
|
f0Detector: str = "dio" # dio or harvest
|
|
|
|
framework: str = "PyTorch" # PyTorch or ONNX
|
|
pyTorchModelFile: str = ""
|
|
onnxModelFile: str = ""
|
|
configFile: str = ""
|
|
|
|
# ↓mutableな物だけ列挙
|
|
intData = ["gpu", "srcId", "dstId"]
|
|
floatData = ["f0Factor"]
|
|
strData = ["framework", "f0Detector"]
|
|
|
|
|
|
class MMVCv15:
|
|
def __init__(self):
|
|
self.settings = MMVCv15Settings()
|
|
self.net_g = None
|
|
self.onnx_session = None
|
|
|
|
self.gpu_num = torch.cuda.device_count()
|
|
|
|
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None):
|
|
self.settings.configFile = config
|
|
self.hps = get_hparams_from_file(config)
|
|
|
|
if pyTorch_model_file != None:
|
|
self.settings.pyTorchModelFile = pyTorch_model_file
|
|
else:
|
|
self.settings.pyTorchModelFile = ""
|
|
if onnx_model_file:
|
|
self.settings.onnxModelFile = onnx_model_file
|
|
else:
|
|
self.settings.onnxModelFile = ""
|
|
|
|
# PyTorchモデル生成
|
|
self.net_g = SynthesizerTrn(
|
|
spec_channels=self.hps.data.filter_length // 2 + 1,
|
|
segment_size=self.hps.train.segment_size // self.hps.data.hop_length,
|
|
inter_channels=self.hps.model.inter_channels,
|
|
hidden_channels=self.hps.model.hidden_channels,
|
|
upsample_rates=self.hps.model.upsample_rates,
|
|
upsample_initial_channel=self.hps.model.upsample_initial_channel,
|
|
upsample_kernel_sizes=self.hps.model.upsample_kernel_sizes,
|
|
n_flow=self.hps.model.n_flow,
|
|
dec_out_channels=1,
|
|
dec_kernel_size=7,
|
|
n_speakers=self.hps.data.n_speakers,
|
|
gin_channels=self.hps.model.gin_channels,
|
|
requires_grad_pe=self.hps.requires_grad.pe,
|
|
requires_grad_flow=self.hps.requires_grad.flow,
|
|
requires_grad_text_enc=self.hps.requires_grad.text_enc,
|
|
requires_grad_dec=self.hps.requires_grad.dec
|
|
)
|
|
if pyTorch_model_file != None:
|
|
self.net_g.eval()
|
|
load_checkpoint(pyTorch_model_file, self.net_g, None)
|
|
|
|
# ONNXモデル生成
|
|
self.onxx_input_length = 8192
|
|
if onnx_model_file != None:
|
|
ort_options = onnxruntime.SessionOptions()
|
|
ort_options.intra_op_num_threads = 8
|
|
self.onnx_session = onnxruntime.InferenceSession(
|
|
onnx_model_file,
|
|
providers=providers
|
|
)
|
|
inputs_info = self.onnx_session.get_inputs()
|
|
for i in inputs_info:
|
|
# print("ONNX INPUT SHAPE", i.name, i.shape)
|
|
if i.name == "sin":
|
|
self.onxx_input_length = i.shape[2]
|
|
return self.get_info()
|
|
|
|
def update_settings(self, key: str, val: any):
|
|
if key == "onnxExecutionProvider" and self.settings.onnxModelFile != "": # self.onnx_session != None:
|
|
if val == "CUDAExecutionProvider":
|
|
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
|
|
self.settings.gpu = 0
|
|
provider_options = [{'device_id': self.settings.gpu}]
|
|
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
|
|
else:
|
|
self.onnx_session.set_providers(providers=[val])
|
|
elif key in self.settings.intData:
|
|
setattr(self.settings, key, int(val))
|
|
if key == "gpu" and val >= 0 and val < self.gpu_num and self.settings.onnxModelFile != "": # self.onnx_session != None:
|
|
providers = self.onnx_session.get_providers()
|
|
print("Providers:", providers)
|
|
if "CUDAExecutionProvider" in providers:
|
|
provider_options = [{'device_id': self.settings.gpu}]
|
|
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
|
|
elif key in self.settings.floatData:
|
|
setattr(self.settings, key, float(val))
|
|
elif key in self.settings.strData:
|
|
setattr(self.settings, key, str(val))
|
|
else:
|
|
return False
|
|
|
|
return True
|
|
|
|
def get_info(self):
|
|
data = asdict(self.settings)
|
|
|
|
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.settings.onnxModelFile != "" else []
|
|
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
|
for f in files:
|
|
if data[f] != None and os.path.exists(data[f]):
|
|
data[f] = os.path.basename(data[f])
|
|
else:
|
|
data[f] = ""
|
|
|
|
return data
|
|
|
|
def get_processing_sampling_rate(self):
|
|
return self.hps.data.sampling_rate
|
|
|
|
def _get_f0(self, detector: str, newData: any):
|
|
|
|
audio_norm_np = newData.astype(np.float64)
|
|
if detector == "dio":
|
|
_f0, _time = pw.dio(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5)
|
|
f0 = pw.stonemask(audio_norm_np, _f0, _time, self.hps.data.sampling_rate)
|
|
else:
|
|
f0, t = pw.harvest(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5, f0_floor=71.0, f0_ceil=1000.0)
|
|
f0 = convert_continuos_f0(f0, int(audio_norm_np.shape[0] / self.hps.data.hop_length))
|
|
f0 = torch.from_numpy(f0.astype(np.float32))
|
|
return f0
|
|
|
|
def _get_spec(self, newData: any):
|
|
audio = torch.FloatTensor(newData)
|
|
audio_norm = audio.unsqueeze(0) # unsqueeze
|
|
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
|
|
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
|
center=False)
|
|
spec = torch.squeeze(spec, 0)
|
|
return spec
|
|
|
|
def generate_input(self, newData: any, inputSize: int, crossfadeSize: int):
|
|
newData = newData.astype(np.float32) / self.hps.data.max_wav_value
|
|
|
|
if hasattr(self, "audio_buffer"):
|
|
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
|
|
else:
|
|
self.audio_buffer = newData
|
|
|
|
convertSize = inputSize + crossfadeSize
|
|
if convertSize < 8192:
|
|
convertSize = 8192
|
|
if convertSize % self.hps.data.hop_length != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
|
convertSize = convertSize + (self.hps.data.hop_length - (convertSize % self.hps.data.hop_length))
|
|
|
|
# ONNX は固定長
|
|
if self.settings.framework == "ONNX":
|
|
convertSize = self.onxx_input_length
|
|
|
|
self.audio_buffer = self.audio_buffer[-1 * convertSize:] # 変換対象の部分だけ抽出
|
|
|
|
f0 = self._get_f0(self.settings.f0Detector, self.audio_buffer) # torch
|
|
f0 = (f0 * self.settings.f0Factor).unsqueeze(0).unsqueeze(0)
|
|
spec = self._get_spec(self.audio_buffer) # torch
|
|
sid = torch.LongTensor([int(self.settings.srcId)])
|
|
return [spec, f0, sid]
|
|
|
|
def _onnx_inference(self, data):
|
|
if self.settings.onnxModelFile == "":
|
|
print("[Voice Changer] No ONNX session.")
|
|
return np.zeros(1).astype(np.int16)
|
|
|
|
spec, f0, sid_src = data
|
|
spec = spec.unsqueeze(0)
|
|
spec_lengths = torch.tensor([spec.size(2)])
|
|
sid_tgt1 = torch.LongTensor([self.settings.dstId])
|
|
sin, d = self.net_g.make_sin_d(f0)
|
|
(d0, d1, d2, d3) = d
|
|
audio1 = self.onnx_session.run(
|
|
["audio"],
|
|
{
|
|
"specs": spec.numpy(),
|
|
"lengths": spec_lengths.numpy(),
|
|
"sin": sin.numpy(),
|
|
"d0": d0.numpy(),
|
|
"d1": d1.numpy(),
|
|
"d2": d2.numpy(),
|
|
"d3": d3.numpy(),
|
|
"sid_src": sid_src.numpy(),
|
|
"sid_tgt": sid_tgt1.numpy()
|
|
})[0][0, 0] * self.hps.data.max_wav_value
|
|
return audio1
|
|
|
|
def _pyTorch_inference(self, data):
|
|
if self.settings.pyTorchModelFile == "":
|
|
print("[Voice Changer] No pyTorch session.")
|
|
return np.zeros(1).astype(np.int16)
|
|
|
|
if self.settings.gpu < 0 or self.gpu_num == 0:
|
|
dev = torch.device("cpu")
|
|
else:
|
|
dev = torch.device("cuda", index=self.settings.gpu)
|
|
|
|
with torch.no_grad():
|
|
spec, f0, sid_src = data
|
|
spec = spec.unsqueeze(0).to(dev)
|
|
spec_lengths = torch.tensor([spec.size(2)]).to(dev)
|
|
f0 = f0.to(dev)
|
|
sid_src = sid_src.to(dev)
|
|
sid_target = torch.LongTensor([self.settings.dstId]).to(dev)
|
|
|
|
audio1 = self.net_g.to(dev).voice_conversion(spec, spec_lengths, f0, sid_src, sid_target)[0, 0].data * self.hps.data.max_wav_value
|
|
result = audio1.float().cpu().numpy()
|
|
return result
|
|
|
|
def inference(self, data):
|
|
if self.settings.framework == "ONNX":
|
|
audio = self._onnx_inference(data)
|
|
else:
|
|
audio = self._pyTorch_inference(data)
|
|
return audio
|
|
|
|
def __del__(self):
|
|
del self.net_g
|
|
del self.onnx_session
|
|
|
|
remove_path = os.path.join("MMVC_Client_v15", "python")
|
|
sys.path = [x for x in sys.path if x.endswith(remove_path) == False]
|
|
|
|
for key in list(sys.modules):
|
|
val = sys.modules.get(key)
|
|
try:
|
|
file_path = val.__file__
|
|
if file_path.find(remove_path + os.path.sep) >= 0:
|
|
print("remove", key, file_path)
|
|
sys.modules.pop(key)
|
|
except Exception as e:
|
|
pass
|