mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-24 05:55:01 +03:00
77 lines
3.0 KiB
Python
77 lines
3.0 KiB
Python
import numpy as np
|
|
from const import PitchExtractorType
|
|
from voice_changer.DiffusionSVC.pitchExtractor.PitchExtractor import PitchExtractor
|
|
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
|
|
import onnxruntime
|
|
|
|
|
|
class RMVPOnnxEPitchExtractor(PitchExtractor):
|
|
|
|
def __init__(self, file: str, gpu: int):
|
|
super().__init__()
|
|
self.file = file
|
|
self.pitchExtractorType: PitchExtractorType = "rmvpe_onnx"
|
|
self.f0_min = 50
|
|
self.f0_max = 1100
|
|
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
|
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
|
|
|
(
|
|
onnxProviders,
|
|
onnxProviderOptions,
|
|
) = DeviceManager.get_instance().getOnnxExecutionProvider(gpu)
|
|
self.onnxProviders = onnxProviders
|
|
self.onnxProviderOptions = onnxProviderOptions
|
|
|
|
so = onnxruntime.SessionOptions()
|
|
so.log_severity_level = 3
|
|
self.onnx_session = onnxruntime.InferenceSession(self.file, sess_options=so, providers=onnxProviders, provider_options=onnxProviderOptions)
|
|
|
|
def extract(self, audio, pitchf, f0_up_key, sr, window, silence_front=0):
|
|
try:
|
|
# データ変換
|
|
if isinstance(audio, np.ndarray) is False:
|
|
audio = audio = audio.cpu().numpy()
|
|
|
|
if isinstance(pitchf, np.ndarray) is False:
|
|
pitchf = pitchf.cpu().numpy().astype(np.float32)
|
|
|
|
if audio.ndim != 1:
|
|
raise RuntimeError(f"Exeption in {self.__class__.__name__} audio.ndim is not 1 (size :{audio.ndim}, {audio.shape})")
|
|
if pitchf.ndim != 1:
|
|
raise RuntimeError(f"Exeption in {self.__class__.__name__} pitchf.ndim is not 1 (size :{pitchf.ndim}, {pitchf.shape})")
|
|
|
|
# 処理
|
|
silenceFrontFrame = silence_front * sr
|
|
startWindow = int(silenceFrontFrame / window) # 小数点以下切り捨て
|
|
slienceFrontFrameOffset = startWindow * window
|
|
targetFrameLength = len(audio) - slienceFrontFrameOffset
|
|
minimumFrames = 0.01 * sr
|
|
targetFrameLength = max(minimumFrames, targetFrameLength)
|
|
audio = audio[-targetFrameLength:]
|
|
audio = np.expand_dims(audio, axis=0)
|
|
|
|
output = self.onnx_session.run(
|
|
["f0", "uv"],
|
|
{
|
|
"waveform": audio.astype(np.float32),
|
|
"threshold": np.array([0.3]).astype(np.float32),
|
|
},
|
|
)
|
|
|
|
f0 = output[0].squeeze()
|
|
|
|
f0 *= pow(2, f0_up_key / 12)
|
|
pitchf[-f0.shape[0]:] = f0[: pitchf.shape[0]]
|
|
|
|
f0_mel = 1127.0 * np.log(1.0 + pitchf / 700.0)
|
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (self.f0_mel_max - self.f0_mel_min) + 1
|
|
f0_mel[f0_mel <= 1] = 1
|
|
f0_mel[f0_mel > 255] = 255
|
|
f0_coarse = np.rint(f0_mel).astype(int)
|
|
|
|
except Exception as e:
|
|
raise RuntimeError(f"Exeption in {self.__class__.__name__}", e)
|
|
|
|
return f0_coarse, pitchf
|