voice-changer/server/voice_changer/RVC/RVCModelSlotGenerator.py
2023-06-21 09:18:51 +09:00

153 lines
6.8 KiB
Python

import os
from const import EnumEmbedderTypes, EnumInferenceTypes
import torch
import onnxruntime
import json
from data.ModelSlot import ModelSlot, RVCModelSlot
from voice_changer.utils.LoadModelParams import LoadModelParams
from voice_changer.utils.ModelSlotGenerator import ModelSlotGenerator
class RVCModelSlotGenerator(ModelSlotGenerator):
@classmethod
def loadModel(cls, props: LoadModelParams):
slotInfo: RVCModelSlot = RVCModelSlot()
for file in props.files:
if file.kind == "rvcModel":
slotInfo.modelFile = file.name
elif file.kind == "rvcIndex":
slotInfo.indexFile = file.name
slotInfo.defaultTune = 0
slotInfo.defaultIndexRatio = 0
slotInfo.defaultProtect = 0.5
slotInfo.isONNX = slotInfo.modelFile.endswith(".onnx")
slotInfo.name = os.path.splitext(os.path.basename(slotInfo.modelFile))[0]
# slotInfo.iconFile = "/assets/icons/noimage.png"
if slotInfo.isONNX:
cls._setInfoByONNX(slotInfo)
else:
cls._setInfoByPytorch(slotInfo)
return slotInfo
@classmethod
def _setInfoByPytorch(cls, slot: ModelSlot):
cpt = torch.load(slot.modelFile, map_location="cpu")
config_len = len(cpt["config"])
if config_len == 18:
# Original RVC
slot.f0 = True if cpt["f0"] == 1 else False
version = cpt.get("version", "v1")
if version is None or version == "v1":
slot.modelType = EnumInferenceTypes.pyTorchRVC.value if slot.f0 else EnumInferenceTypes.pyTorchRVCNono.value
slot.embChannels = 256
slot.embOutputLayer = 9
slot.useFinalProj = True
slot.embedder = EnumEmbedderTypes.hubert.value
print("[Voice Changer] Official Model(pyTorch) : v1")
else:
slot.modelType = EnumInferenceTypes.pyTorchRVCv2.value if slot.f0 else EnumInferenceTypes.pyTorchRVCv2Nono.value
slot.embChannels = 768
slot.embOutputLayer = 12
slot.useFinalProj = False
slot.embedder = EnumEmbedderTypes.hubert.value
print("[Voice Changer] Official Model(pyTorch) : v2")
else:
# DDPN RVC
slot.f0 = True if cpt["f0"] == 1 else False
slot.modelType = EnumInferenceTypes.pyTorchWebUI.value if slot.f0 else EnumInferenceTypes.pyTorchWebUINono.value
slot.embChannels = cpt["config"][17]
slot.embOutputLayer = cpt["embedder_output_layer"] if "embedder_output_layer" in cpt else 9
if slot.embChannels == 256:
slot.useFinalProj = True
else:
slot.useFinalProj = False
# DDPNモデルの情報を表示
if slot.embChannels == 256 and slot.embOutputLayer == 9 and slot.useFinalProj is True:
print("[Voice Changer] DDPN Model(pyTorch) : Official v1 like")
elif slot.embChannels == 768 and slot.embOutputLayer == 12 and slot.useFinalProj is False:
print("[Voice Changer] DDPN Model(pyTorch): Official v2 like")
else:
print(f"[Voice Changer] DDPN Model(pyTorch): ch:{slot.embChannels}, L:{slot.embOutputLayer}, FP:{slot.useFinalProj}")
slot.embedder = cpt["embedder_name"]
if slot.embedder.endswith("768"):
slot.embedder = slot.embedder[:-3]
# if slot.embedder == EnumEmbedderTypes.hubert.value:
# slot.embedder = EnumEmbedderTypes.hubert
# elif slot.embedder == EnumEmbedderTypes.contentvec.value:
# slot.embedder = EnumEmbedderTypes.contentvec
# elif slot.embedder == EnumEmbedderTypes.hubert_jp.value:
# slot.embedder = EnumEmbedderTypes.hubert_jp
# else:
# raise RuntimeError("[Voice Changer][setInfoByONNX] unknown embedder")
slot.samplingRate = cpt["config"][-1]
del cpt
@classmethod
def _setInfoByONNX(cls, slot: ModelSlot):
tmp_onnx_session = onnxruntime.InferenceSession(slot.modelFile, providers=["CPUExecutionProvider"])
modelmeta = tmp_onnx_session.get_modelmeta()
try:
metadata = json.loads(modelmeta.custom_metadata_map["metadata"])
# slot.modelType = metadata["modelType"]
slot.embChannels = metadata["embChannels"]
slot.embOutputLayer = metadata["embOutputLayer"] if "embOutputLayer" in metadata else 9
slot.useFinalProj = metadata["useFinalProj"] if "useFinalProj" in metadata else True if slot.embChannels == 256 else False
if slot.embChannels == 256:
slot.useFinalProj = True
else:
slot.useFinalProj = False
# ONNXモデルの情報を表示
if slot.embChannels == 256 and slot.embOutputLayer == 9 and slot.useFinalProj is True:
print("[Voice Changer] ONNX Model: Official v1 like")
elif slot.embChannels == 768 and slot.embOutputLayer == 12 and slot.useFinalProj is False:
print("[Voice Changer] ONNX Model: Official v2 like")
else:
print(f"[Voice Changer] ONNX Model: ch:{slot.embChannels}, L:{slot.embOutputLayer}, FP:{slot.useFinalProj}")
if "embedder" not in metadata:
slot.embedder = EnumEmbedderTypes.hubert.value
else:
slot.embedder = metadata["embedder"]
# elif metadata["embedder"] == EnumEmbedderTypes.hubert.value:
# slot.embedder = EnumEmbedderTypes.hubert
# elif metadata["embedder"] == EnumEmbedderTypes.contentvec.value:
# slot.embedder = EnumEmbedderTypes.contentvec
# elif metadata["embedder"] == EnumEmbedderTypes.hubert_jp.value:
# slot.embedder = EnumEmbedderTypes.hubert_jp
# else:
# raise RuntimeError("[Voice Changer][setInfoByONNX] unknown embedder")
slot.f0 = metadata["f0"]
slot.modelType = EnumInferenceTypes.onnxRVC.value if slot.f0 else EnumInferenceTypes.onnxRVCNono.value
slot.samplingRate = metadata["samplingRate"]
slot.deprecated = False
except Exception as e:
slot.modelType = EnumInferenceTypes.onnxRVC.value
slot.embChannels = 256
slot.embedder = EnumEmbedderTypes.hubert.value
slot.f0 = True
slot.samplingRate = 48000
slot.deprecated = True
print("[Voice Changer] setInfoByONNX", e)
print("[Voice Changer] ############## !!!! CAUTION !!!! ####################")
print("[Voice Changer] This onnxfie is depricated. Please regenerate onnxfile.")
print("[Voice Changer] ############## !!!! CAUTION !!!! ####################")
del tmp_onnx_session