mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-26 06:55:02 +03:00
167 lines
7.0 KiB
Python
167 lines
7.0 KiB
Python
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
from .modules import ResidualCouplingLayer, Flip, WN, ResBlock1, ResBlock2, LRELU_SLOPE
|
|
|
|
|
|
from torch.nn import Conv1d, ConvTranspose1d
|
|
from torch.nn.utils import weight_norm, remove_weight_norm
|
|
from .commons import init_weights, sequence_mask
|
|
|
|
|
|
class ResidualCouplingBlock(nn.Module):
|
|
def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
self.n_flows = n_flows
|
|
self.gin_channels = gin_channels
|
|
|
|
self.flows = nn.ModuleList()
|
|
for i in range(n_flows):
|
|
self.flows.append(ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
|
self.flows.append(Flip())
|
|
|
|
def forward(self, x, x_mask, g=None, reverse=False):
|
|
if not reverse:
|
|
for flow in self.flows:
|
|
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
|
else:
|
|
for flow in reversed(self.flows):
|
|
x = flow(x, x_mask, g=g, reverse=reverse)
|
|
return x
|
|
|
|
|
|
class PosteriorEncoder(nn.Module):
|
|
def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
self.gin_channels = gin_channels
|
|
|
|
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
|
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
|
# self.randn = torch.randn(1, 1, 1) # ダミーで初期化
|
|
|
|
def forward(self, x, x_lengths, g=None):
|
|
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
|
x = self.pre(x) * x_mask
|
|
x = self.enc(x, x_mask, g=g)
|
|
stats = self.proj(x) * x_mask
|
|
m, logs = torch.split(stats, self.out_channels, dim=1)
|
|
# if self.randn.size() != m.size(): # m の形が違う時だけ生成
|
|
self.randn = torch.randn_like(m)
|
|
z = (m + self.randn * torch.exp(logs)) * x_mask
|
|
return z, m, logs, x_mask
|
|
|
|
|
|
class Generator(torch.nn.Module):
|
|
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
|
super(Generator, self).__init__()
|
|
self.num_kernels = len(resblock_kernel_sizes)
|
|
self.num_upsamples = len(upsample_rates)
|
|
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
|
resblock = ResBlock1 if resblock == "1" else ResBlock2
|
|
|
|
self.ups = nn.ModuleList()
|
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
|
self.ups.append(weight_norm(ConvTranspose1d(upsample_initial_channel // (2**i), upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k - u) // 2)))
|
|
|
|
self.resblocks = nn.ModuleList()
|
|
for i in range(len(self.ups)):
|
|
ch = upsample_initial_channel // (2 ** (i + 1))
|
|
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
|
self.resblocks.append(resblock(ch, k, d))
|
|
|
|
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
|
self.ups.apply(init_weights)
|
|
|
|
if gin_channels != 0:
|
|
# self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
|
gin_channels = 0
|
|
|
|
def forward(self, x, g=None):
|
|
x = self.conv_pre(x)
|
|
if g is not None:
|
|
# x = x + self.cond(g)
|
|
g = None
|
|
|
|
for i in range(self.num_upsamples):
|
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
|
x = self.ups[i](x)
|
|
xs = None
|
|
for j in range(self.num_kernels):
|
|
if xs is None:
|
|
xs = self.resblocks[i * self.num_kernels + j](x)
|
|
else:
|
|
xs += self.resblocks[i * self.num_kernels + j](x)
|
|
x = xs / self.num_kernels
|
|
x = F.leaky_relu(x)
|
|
x = self.conv_post(x)
|
|
x = torch.tanh(x)
|
|
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
print("Removing weight norm...")
|
|
for l in self.ups:
|
|
remove_weight_norm(l)
|
|
for l in self.resblocks:
|
|
l.remove_weight_norm()
|
|
|
|
|
|
class SynthesizerTrn(nn.Module):
|
|
"""
|
|
Synthesizer for Training
|
|
"""
|
|
|
|
def __init__(self, n_vocab, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, n_flow, n_speakers=0, gin_channels=0, use_sdp=True, **kwargs):
|
|
super().__init__()
|
|
self.n_vocab = n_vocab
|
|
self.spec_channels = spec_channels
|
|
self.hidden_channels = hidden_channels
|
|
self.filter_channels = filter_channels
|
|
self.n_heads = n_heads
|
|
self.n_layers = n_layers
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.resblock = resblock
|
|
self.resblock_kernel_sizes = resblock_kernel_sizes
|
|
self.resblock_dilation_sizes = resblock_dilation_sizes
|
|
self.upsample_rates = upsample_rates
|
|
self.upsample_initial_channel = upsample_initial_channel
|
|
self.upsample_kernel_sizes = upsample_kernel_sizes
|
|
self.segment_size = segment_size
|
|
self.n_speakers = n_speakers
|
|
self.gin_channels = gin_channels
|
|
self.use_sdp = use_sdp
|
|
|
|
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
|
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
|
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, n_flows=n_flow, gin_channels=gin_channels)
|
|
|
|
if n_speakers > 1:
|
|
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
|
|
|
def forward(self, y, y_lengths, sid_src, sid_tgt):
|
|
return self.voice_conversion(y, y_lengths, sid_src, sid_tgt)
|
|
|
|
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
|
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
|
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
|
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
|
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
|
z_p = self.flow(z, y_mask, g=g_src)
|
|
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
|
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
|
return o_hat
|