2023-01-14 00:44:30 +03:00
|
|
|
import torch
|
2023-04-28 07:49:40 +03:00
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import json
|
2023-01-14 00:44:30 +03:00
|
|
|
import logging
|
2023-04-28 07:49:40 +03:00
|
|
|
|
2023-07-26 22:06:25 +03:00
|
|
|
# logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
2023-01-14 00:44:30 +03:00
|
|
|
logger = logging
|
|
|
|
|
|
|
|
hann_window = {}
|
2023-04-28 07:49:40 +03:00
|
|
|
|
|
|
|
|
2023-01-14 00:44:30 +03:00
|
|
|
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
2023-04-28 07:49:40 +03:00
|
|
|
if torch.min(y) < -1.0:
|
|
|
|
print("min value is ", torch.min(y))
|
|
|
|
if torch.max(y) > 1.0:
|
|
|
|
print("max value is ", torch.max(y))
|
2023-01-14 00:44:30 +03:00
|
|
|
|
|
|
|
global hann_window
|
2023-04-28 07:49:40 +03:00
|
|
|
dtype_device = str(y.dtype) + "_" + str(y.device)
|
|
|
|
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
2023-01-14 00:44:30 +03:00
|
|
|
if wnsize_dtype_device not in hann_window:
|
2023-04-28 07:49:40 +03:00
|
|
|
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
|
|
|
dtype=y.dtype, device=y.device
|
|
|
|
)
|
|
|
|
|
|
|
|
y = torch.nn.functional.pad(
|
|
|
|
y.unsqueeze(1),
|
|
|
|
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
|
|
|
mode="reflect",
|
|
|
|
)
|
2023-01-14 00:44:30 +03:00
|
|
|
y = y.squeeze(1)
|
|
|
|
|
2023-04-28 07:49:40 +03:00
|
|
|
spec = torch.stft(
|
|
|
|
y,
|
|
|
|
n_fft,
|
|
|
|
hop_length=hop_size,
|
|
|
|
win_length=win_size,
|
|
|
|
window=hann_window[wnsize_dtype_device],
|
|
|
|
center=center,
|
|
|
|
pad_mode="reflect",
|
|
|
|
normalized=False,
|
|
|
|
onesided=True,
|
|
|
|
return_complex=True,
|
|
|
|
)
|
2023-01-14 00:44:30 +03:00
|
|
|
spec = torch.view_as_real(spec)
|
|
|
|
|
|
|
|
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
|
|
|
return spec
|
|
|
|
|
2023-04-28 07:49:40 +03:00
|
|
|
|
|
|
|
class TextAudioSpeakerCollate:
|
|
|
|
"""Zero-pads model inputs and targets"""
|
|
|
|
|
|
|
|
def __init__(self, return_ids=False, no_text=False):
|
2023-01-14 00:44:30 +03:00
|
|
|
self.return_ids = return_ids
|
|
|
|
self.no_text = no_text
|
|
|
|
|
|
|
|
def __call__(self, batch):
|
|
|
|
"""Collate's training batch from normalized text, audio and speaker identities
|
|
|
|
PARAMS
|
|
|
|
------
|
|
|
|
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
|
|
|
"""
|
|
|
|
# Right zero-pad all one-hot text sequences to max input length
|
|
|
|
_, ids_sorted_decreasing = torch.sort(
|
2023-04-28 07:49:40 +03:00
|
|
|
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
|
|
|
|
)
|
2023-01-14 00:44:30 +03:00
|
|
|
|
|
|
|
max_text_len = max([len(x[0]) for x in batch])
|
|
|
|
max_spec_len = max([x[1].size(1) for x in batch])
|
|
|
|
max_wav_len = max([x[2].size(1) for x in batch])
|
|
|
|
|
|
|
|
text_lengths = torch.LongTensor(len(batch))
|
|
|
|
spec_lengths = torch.LongTensor(len(batch))
|
|
|
|
wav_lengths = torch.LongTensor(len(batch))
|
|
|
|
sid = torch.LongTensor(len(batch))
|
|
|
|
|
|
|
|
text_padded = torch.LongTensor(len(batch), max_text_len)
|
|
|
|
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
|
|
|
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
|
|
|
text_padded.zero_()
|
|
|
|
spec_padded.zero_()
|
|
|
|
wav_padded.zero_()
|
|
|
|
for i in range(len(ids_sorted_decreasing)):
|
|
|
|
row = batch[ids_sorted_decreasing[i]]
|
|
|
|
|
|
|
|
text = row[0]
|
2023-04-28 07:49:40 +03:00
|
|
|
text_padded[i, : text.size(0)] = text
|
2023-01-14 00:44:30 +03:00
|
|
|
text_lengths[i] = text.size(0)
|
|
|
|
|
|
|
|
spec = row[1]
|
2023-04-28 07:49:40 +03:00
|
|
|
spec_padded[i, :, : spec.size(1)] = spec
|
2023-01-14 00:44:30 +03:00
|
|
|
spec_lengths[i] = spec.size(1)
|
|
|
|
|
|
|
|
wav = row[2]
|
2023-04-28 07:49:40 +03:00
|
|
|
wav_padded[i, :, : wav.size(1)] = wav
|
2023-01-14 00:44:30 +03:00
|
|
|
wav_lengths[i] = wav.size(1)
|
|
|
|
|
|
|
|
sid[i] = row[3]
|
|
|
|
|
|
|
|
if self.return_ids:
|
2023-04-28 07:49:40 +03:00
|
|
|
return (
|
|
|
|
text_padded,
|
|
|
|
text_lengths,
|
|
|
|
spec_padded,
|
|
|
|
spec_lengths,
|
|
|
|
wav_padded,
|
|
|
|
wav_lengths,
|
|
|
|
sid,
|
|
|
|
ids_sorted_decreasing,
|
|
|
|
)
|
|
|
|
return (
|
|
|
|
text_padded,
|
|
|
|
text_lengths,
|
|
|
|
spec_padded,
|
|
|
|
spec_lengths,
|
|
|
|
wav_padded,
|
|
|
|
wav_lengths,
|
|
|
|
sid,
|
|
|
|
)
|
2023-01-14 00:44:30 +03:00
|
|
|
|
|
|
|
|
|
|
|
def load_checkpoint(checkpoint_path, model, optimizer=None):
|
2023-04-28 07:49:40 +03:00
|
|
|
assert os.path.isfile(
|
|
|
|
checkpoint_path
|
|
|
|
), f"No such file or directory: {checkpoint_path}"
|
|
|
|
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
|
|
|
iteration = checkpoint_dict["iteration"]
|
|
|
|
learning_rate = checkpoint_dict["learning_rate"]
|
|
|
|
if optimizer is not None:
|
|
|
|
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
|
|
|
saved_state_dict = checkpoint_dict["model"]
|
|
|
|
if hasattr(model, "module"):
|
|
|
|
state_dict = model.module.state_dict()
|
|
|
|
else:
|
|
|
|
state_dict = model.state_dict()
|
|
|
|
new_state_dict = {}
|
|
|
|
for k, v in state_dict.items():
|
|
|
|
try:
|
|
|
|
new_state_dict[k] = saved_state_dict[k]
|
|
|
|
except:
|
|
|
|
logger.info("%s is not in the checkpoint" % k)
|
|
|
|
new_state_dict[k] = v
|
|
|
|
if hasattr(model, "module"):
|
|
|
|
model.module.load_state_dict(new_state_dict)
|
|
|
|
else:
|
|
|
|
model.load_state_dict(new_state_dict)
|
|
|
|
logger.info(
|
|
|
|
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
|
|
|
|
)
|
|
|
|
return model, optimizer, learning_rate, iteration
|
2023-01-14 00:44:30 +03:00
|
|
|
|
|
|
|
|
|
|
|
def get_hparams_from_file(config_path):
|
2023-04-28 07:49:40 +03:00
|
|
|
with open(config_path, "r") as f:
|
|
|
|
data = f.read()
|
|
|
|
config = json.loads(data)
|
|
|
|
|
|
|
|
hparams = HParams(**config)
|
|
|
|
return hparams
|
2023-01-14 00:44:30 +03:00
|
|
|
|
|
|
|
|
2023-04-28 07:49:40 +03:00
|
|
|
class HParams:
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
for k, v in kwargs.items():
|
|
|
|
if type(v) == dict:
|
|
|
|
v = HParams(**v)
|
|
|
|
self[k] = v
|
2023-01-14 00:44:30 +03:00
|
|
|
|
2023-04-28 07:49:40 +03:00
|
|
|
def keys(self):
|
|
|
|
return self.__dict__.keys()
|
2023-01-14 00:44:30 +03:00
|
|
|
|
2023-04-28 07:49:40 +03:00
|
|
|
def items(self):
|
|
|
|
return self.__dict__.items()
|
2023-01-14 00:44:30 +03:00
|
|
|
|
2023-04-28 07:49:40 +03:00
|
|
|
def values(self):
|
|
|
|
return self.__dict__.values()
|
2023-01-14 00:44:30 +03:00
|
|
|
|
2023-04-28 07:49:40 +03:00
|
|
|
def __len__(self):
|
|
|
|
return len(self.__dict__)
|
2023-01-14 00:44:30 +03:00
|
|
|
|
2023-04-28 07:49:40 +03:00
|
|
|
def __getitem__(self, key):
|
|
|
|
return getattr(self, key)
|
2023-01-14 00:44:30 +03:00
|
|
|
|
2023-04-28 07:49:40 +03:00
|
|
|
def __setitem__(self, key, value):
|
|
|
|
return setattr(self, key, value)
|
2023-01-14 00:44:30 +03:00
|
|
|
|
2023-04-28 07:49:40 +03:00
|
|
|
def __contains__(self, key):
|
|
|
|
return key in self.__dict__
|
2023-01-14 00:44:30 +03:00
|
|
|
|
2023-04-28 07:49:40 +03:00
|
|
|
def __repr__(self):
|
|
|
|
return self.__dict__.__repr__()
|