2023-03-18 19:43:36 +03:00
|
|
|
import sys
|
|
|
|
import os
|
2023-06-20 00:39:39 +03:00
|
|
|
from data.ModelSlot import SoVitsSvc40ModelSlot
|
2023-08-05 06:33:31 +03:00
|
|
|
from voice_changer.VoiceChangerParamsManager import VoiceChangerParamsManager
|
2023-04-28 08:12:19 +03:00
|
|
|
|
2023-11-08 13:54:13 +03:00
|
|
|
from voice_changer.utils.VoiceChangerModel import AudioInOut, VoiceChangerModel
|
2023-04-28 08:12:19 +03:00
|
|
|
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
|
|
|
|
|
|
|
|
if sys.platform.startswith("darwin"):
|
2023-03-18 19:43:36 +03:00
|
|
|
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
|
|
|
|
if len(baseDir) != 1:
|
|
|
|
print("baseDir should be only one ", baseDir)
|
|
|
|
sys.exit()
|
|
|
|
modulePath = os.path.join(baseDir[0], "so-vits-svc-40")
|
|
|
|
sys.path.append(modulePath)
|
|
|
|
else:
|
|
|
|
sys.path.append("so-vits-svc-40")
|
|
|
|
|
|
|
|
from dataclasses import dataclass, asdict, field
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import onnxruntime
|
2023-04-28 08:12:19 +03:00
|
|
|
|
2023-03-30 05:11:41 +03:00
|
|
|
# onnxruntime.set_default_logger_severity(3)
|
|
|
|
|
2023-03-18 19:43:36 +03:00
|
|
|
import pyworld as pw
|
|
|
|
|
2023-06-22 03:21:39 +03:00
|
|
|
# from models import SynthesizerTrn # type:ignore
|
|
|
|
from .models.models import SynthesizerTrn
|
2023-11-08 13:54:13 +03:00
|
|
|
from .models.utils import (
|
|
|
|
interpolate_f0,
|
|
|
|
get_hparams_from_file,
|
|
|
|
load_checkpoint,
|
|
|
|
repeat_expand_2d,
|
|
|
|
get_hubert_content,
|
|
|
|
)
|
2023-06-22 03:21:39 +03:00
|
|
|
from .models.cluster import get_cluster_model, get_cluster_center_result
|
2023-03-18 19:43:36 +03:00
|
|
|
from fairseq import checkpoint_utils
|
|
|
|
import librosa
|
2023-04-17 03:45:12 +03:00
|
|
|
|
|
|
|
from Exceptions import NoModeLoadedException
|
|
|
|
|
|
|
|
|
2023-04-28 08:12:19 +03:00
|
|
|
providers = [
|
|
|
|
"OpenVINOExecutionProvider",
|
|
|
|
"CUDAExecutionProvider",
|
|
|
|
"DmlExecutionProvider",
|
|
|
|
"CPUExecutionProvider",
|
|
|
|
]
|
2023-03-18 19:43:36 +03:00
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
2023-04-28 08:12:19 +03:00
|
|
|
class SoVitsSvc40Settings:
|
2023-07-23 13:39:52 +03:00
|
|
|
gpu: int = -9999
|
2023-03-18 19:43:36 +03:00
|
|
|
dstId: int = 0
|
|
|
|
|
2023-04-28 16:22:42 +03:00
|
|
|
f0Detector: str = "harvest" # dio or harvest
|
2023-03-18 19:43:36 +03:00
|
|
|
tran: int = 20
|
2023-04-20 11:17:43 +03:00
|
|
|
noiseScale: float = 0.3
|
2023-03-18 19:43:36 +03:00
|
|
|
predictF0: int = 0 # 0:False, 1:True
|
|
|
|
silentThreshold: float = 0.00001
|
|
|
|
extraConvertSize: int = 1024 * 32
|
|
|
|
clusterInferRatio: float = 0.1
|
|
|
|
|
2023-04-28 08:12:19 +03:00
|
|
|
speakers: dict[str, int] = field(default_factory=lambda: {})
|
2023-03-18 19:43:36 +03:00
|
|
|
|
|
|
|
# ↓mutableな物だけ列挙
|
2023-06-22 01:40:06 +03:00
|
|
|
intData = ["gpu", "dstId", "tran", "predictF0"]
|
2023-04-20 11:17:43 +03:00
|
|
|
floatData = ["noiseScale", "silentThreshold", "clusterInferRatio"]
|
2023-06-22 01:40:06 +03:00
|
|
|
strData = ["f0Detector"]
|
2023-03-18 19:43:36 +03:00
|
|
|
|
|
|
|
|
2023-11-08 13:54:13 +03:00
|
|
|
class SoVitsSvc40(VoiceChangerModel):
|
2023-06-22 01:40:06 +03:00
|
|
|
def __init__(self, params: VoiceChangerParams, slotInfo: SoVitsSvc40ModelSlot):
|
|
|
|
print("[Voice Changer] [so-vits-svc40] Creating instance ")
|
2023-11-08 13:54:13 +03:00
|
|
|
self.voiceChangerType = "so-vits-svc-40"
|
2023-03-18 19:43:36 +03:00
|
|
|
self.settings = SoVitsSvc40Settings()
|
|
|
|
self.net_g = None
|
|
|
|
self.onnx_session = None
|
|
|
|
|
|
|
|
self.params = params
|
2023-04-18 21:06:45 +03:00
|
|
|
|
2023-03-18 19:43:36 +03:00
|
|
|
# hubert model
|
|
|
|
try:
|
2023-06-22 01:40:06 +03:00
|
|
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
|
|
|
[self.params.hubert_base],
|
|
|
|
suffix="",
|
|
|
|
)
|
|
|
|
model = models[0]
|
|
|
|
model.eval()
|
|
|
|
self.hubert_model = model.cpu()
|
2023-03-18 19:43:36 +03:00
|
|
|
except Exception as e:
|
|
|
|
print("EXCEPTION during loading hubert/contentvec model", e)
|
|
|
|
|
2023-06-22 01:40:06 +03:00
|
|
|
self.gpu_num = torch.cuda.device_count()
|
|
|
|
self.audio_buffer: AudioInOut | None = None
|
|
|
|
self.prevVol = 0
|
|
|
|
self.slotInfo = slotInfo
|
|
|
|
self.initialize()
|
|
|
|
|
|
|
|
def initialize(self):
|
|
|
|
print("[Voice Changer] [so-vits-svc40] Initializing... ")
|
2023-08-05 06:33:31 +03:00
|
|
|
vcparams = VoiceChangerParamsManager.get_instance().params
|
2023-11-08 13:54:13 +03:00
|
|
|
configPath = os.path.join(
|
|
|
|
vcparams.model_dir, str(self.slotInfo.slotIndex), self.slotInfo.configFile
|
|
|
|
)
|
|
|
|
modelPath = os.path.join(
|
|
|
|
vcparams.model_dir, str(self.slotInfo.slotIndex), self.slotInfo.modelFile
|
|
|
|
)
|
2023-08-05 06:33:31 +03:00
|
|
|
self.hps = get_hparams_from_file(configPath)
|
2023-06-22 01:40:06 +03:00
|
|
|
self.settings.speakers = self.hps.spk
|
|
|
|
|
2023-03-18 19:43:36 +03:00
|
|
|
# cluster
|
|
|
|
try:
|
2023-06-22 01:40:06 +03:00
|
|
|
if self.slotInfo.clusterFile is not None:
|
2023-11-08 13:54:13 +03:00
|
|
|
clusterPath = os.path.join(
|
|
|
|
vcparams.model_dir,
|
|
|
|
str(self.slotInfo.slotIndex),
|
|
|
|
self.slotInfo.clusterFile,
|
|
|
|
)
|
2023-08-05 06:33:31 +03:00
|
|
|
self.cluster_model = get_cluster_model(clusterPath)
|
2023-03-18 19:43:36 +03:00
|
|
|
else:
|
|
|
|
self.cluster_model = None
|
|
|
|
except Exception as e:
|
2023-11-08 13:54:13 +03:00
|
|
|
print(
|
|
|
|
"[Voice Changer] [so-vits-svc40] EXCEPTION during loading cluster model ",
|
|
|
|
e,
|
|
|
|
)
|
2023-06-22 01:40:06 +03:00
|
|
|
print("[Voice Changer] [so-vits-svc40] fallback to without cluster")
|
|
|
|
self.cluster_model = None
|
2023-03-18 19:43:36 +03:00
|
|
|
|
2023-06-22 01:40:06 +03:00
|
|
|
# model
|
|
|
|
if self.slotInfo.isONNX:
|
|
|
|
providers, options = self.getOnnxExecutionProvider()
|
|
|
|
self.onnx_session = onnxruntime.InferenceSession(
|
2023-08-05 06:33:31 +03:00
|
|
|
modelPath,
|
2023-06-22 01:40:06 +03:00
|
|
|
providers=providers,
|
|
|
|
provider_options=options,
|
|
|
|
)
|
|
|
|
else:
|
2023-04-28 08:12:19 +03:00
|
|
|
net_g = SynthesizerTrn(
|
2023-03-18 19:43:36 +03:00
|
|
|
self.hps.data.filter_length // 2 + 1,
|
|
|
|
self.hps.train.segment_size // self.hps.data.hop_length,
|
2023-04-28 08:12:19 +03:00
|
|
|
**self.hps.model,
|
2023-03-18 19:43:36 +03:00
|
|
|
)
|
2023-04-28 08:12:19 +03:00
|
|
|
net_g.eval()
|
|
|
|
self.net_g = net_g
|
2023-08-05 06:33:31 +03:00
|
|
|
load_checkpoint(modelPath, self.net_g, None)
|
2023-03-18 19:43:36 +03:00
|
|
|
|
2023-05-08 13:35:39 +03:00
|
|
|
def getOnnxExecutionProvider(self):
|
2023-05-29 11:34:35 +03:00
|
|
|
availableProviders = onnxruntime.get_available_providers()
|
2023-06-22 01:40:06 +03:00
|
|
|
devNum = torch.cuda.device_count()
|
2023-11-08 13:54:13 +03:00
|
|
|
if (
|
|
|
|
self.settings.gpu >= 0
|
|
|
|
and "CUDAExecutionProvider" in availableProviders
|
|
|
|
and devNum > 0
|
|
|
|
):
|
2023-05-08 13:35:39 +03:00
|
|
|
return ["CUDAExecutionProvider"], [{"device_id": self.settings.gpu}]
|
2023-05-29 11:34:35 +03:00
|
|
|
elif self.settings.gpu >= 0 and "DmlExecutionProvider" in availableProviders:
|
|
|
|
return ["DmlExecutionProvider"], [{}]
|
2023-05-08 13:35:39 +03:00
|
|
|
else:
|
|
|
|
return ["CPUExecutionProvider"], [
|
|
|
|
{
|
|
|
|
"intra_op_num_threads": 8,
|
|
|
|
"execution_mode": onnxruntime.ExecutionMode.ORT_PARALLEL,
|
|
|
|
"inter_op_num_threads": 8,
|
|
|
|
}
|
|
|
|
]
|
|
|
|
|
|
|
|
def update_settings(self, key: str, val: int | float | str):
|
|
|
|
if key in self.settings.intData:
|
2023-04-28 08:12:19 +03:00
|
|
|
val = int(val)
|
|
|
|
setattr(self.settings, key, val)
|
2023-05-08 13:35:39 +03:00
|
|
|
|
2023-06-22 01:40:06 +03:00
|
|
|
if key == "gpu" and self.slotInfo.isONNX:
|
2023-05-08 13:35:39 +03:00
|
|
|
providers, options = self.getOnnxExecutionProvider()
|
|
|
|
if self.onnx_session is not None:
|
2023-04-28 08:12:19 +03:00
|
|
|
self.onnx_session.set_providers(
|
2023-05-08 13:35:39 +03:00
|
|
|
providers=providers,
|
|
|
|
provider_options=options,
|
|
|
|
)
|
|
|
|
|
2023-03-18 19:43:36 +03:00
|
|
|
elif key in self.settings.floatData:
|
|
|
|
setattr(self.settings, key, float(val))
|
|
|
|
elif key in self.settings.strData:
|
|
|
|
setattr(self.settings, key, str(val))
|
|
|
|
else:
|
|
|
|
return False
|
|
|
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
def get_info(self):
|
|
|
|
data = asdict(self.settings)
|
|
|
|
|
2023-11-08 13:54:13 +03:00
|
|
|
data["onnxExecutionProviders"] = (
|
|
|
|
self.onnx_session.get_providers() if self.onnx_session is not None else []
|
|
|
|
)
|
2023-03-18 19:43:36 +03:00
|
|
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
def get_processing_sampling_rate(self):
|
2023-04-28 08:12:19 +03:00
|
|
|
if hasattr(self, "hps") is False:
|
2023-04-17 03:45:12 +03:00
|
|
|
raise NoModeLoadedException("config")
|
2023-03-18 19:43:36 +03:00
|
|
|
return self.hps.data.sampling_rate
|
|
|
|
|
|
|
|
def get_unit_f0(self, audio_buffer, tran):
|
|
|
|
wav_44k = audio_buffer
|
2023-03-21 20:59:43 +03:00
|
|
|
|
|
|
|
if self.settings.f0Detector == "dio":
|
2023-04-28 08:12:19 +03:00
|
|
|
f0 = compute_f0_dio(
|
|
|
|
wav_44k,
|
|
|
|
sampling_rate=self.hps.data.sampling_rate,
|
|
|
|
hop_length=self.hps.data.hop_length,
|
|
|
|
)
|
2023-03-21 20:59:43 +03:00
|
|
|
else:
|
2023-04-28 08:12:19 +03:00
|
|
|
f0 = compute_f0_harvest(
|
|
|
|
wav_44k,
|
|
|
|
sampling_rate=self.hps.data.sampling_rate,
|
|
|
|
hop_length=self.hps.data.hop_length,
|
|
|
|
)
|
2023-03-21 20:59:43 +03:00
|
|
|
|
2023-03-18 19:43:36 +03:00
|
|
|
if wav_44k.shape[0] % self.hps.data.hop_length != 0:
|
2023-11-08 13:54:13 +03:00
|
|
|
print(
|
|
|
|
f" !!! !!! !!! wav size not multiple of hopsize: {wav_44k.shape[0] / self.hps.data.hop_length}"
|
|
|
|
)
|
2023-03-18 19:43:36 +03:00
|
|
|
|
2023-06-22 03:21:39 +03:00
|
|
|
f0, uv = interpolate_f0(f0)
|
2023-03-18 19:43:36 +03:00
|
|
|
f0 = torch.FloatTensor(f0)
|
|
|
|
uv = torch.FloatTensor(uv)
|
|
|
|
f0 = f0 * 2 ** (tran / 12)
|
|
|
|
f0 = f0.unsqueeze(0)
|
|
|
|
uv = uv.unsqueeze(0)
|
|
|
|
|
2023-11-08 13:54:13 +03:00
|
|
|
wav16k_numpy = librosa.resample(
|
|
|
|
audio_buffer, orig_sr=self.hps.data.sampling_rate, target_sr=16000
|
|
|
|
)
|
2023-03-29 17:11:35 +03:00
|
|
|
wav16k_tensor = torch.from_numpy(wav16k_numpy)
|
2023-03-18 19:43:36 +03:00
|
|
|
|
2023-06-22 01:40:06 +03:00
|
|
|
if (self.settings.gpu < 0 or self.gpu_num == 0) or self.slotInfo.isONNX:
|
2023-03-18 19:43:36 +03:00
|
|
|
dev = torch.device("cpu")
|
|
|
|
else:
|
|
|
|
dev = torch.device("cuda", index=self.settings.gpu)
|
|
|
|
|
2023-04-18 21:35:04 +03:00
|
|
|
if hasattr(self, "content_vec_onnx"):
|
|
|
|
c = self.content_vec_onnx.run(
|
2023-03-29 18:16:26 +03:00
|
|
|
["units"],
|
|
|
|
{
|
|
|
|
"audio": wav16k_numpy.reshape(1, -1),
|
2023-04-28 08:12:19 +03:00
|
|
|
},
|
|
|
|
)
|
2023-03-29 18:16:26 +03:00
|
|
|
c = torch.from_numpy(np.array(c)).squeeze(0).transpose(1, 2)
|
2023-04-18 21:35:04 +03:00
|
|
|
# print("onnx hubert:", self.content_vec_onnx.get_providers())
|
2023-03-29 18:16:26 +03:00
|
|
|
else:
|
2023-04-03 11:33:28 +03:00
|
|
|
if self.hps.model.ssl_dim == 768:
|
|
|
|
self.hubert_model = self.hubert_model.to(dev)
|
|
|
|
wav16k_tensor = wav16k_tensor.to(dev)
|
2023-11-08 13:54:13 +03:00
|
|
|
c = get_hubert_content_layer9(
|
|
|
|
self.hubert_model, wav_16k_tensor=wav16k_tensor
|
|
|
|
)
|
2023-04-03 11:33:28 +03:00
|
|
|
else:
|
|
|
|
self.hubert_model = self.hubert_model.to(dev)
|
|
|
|
wav16k_tensor = wav16k_tensor.to(dev)
|
2023-06-22 03:21:39 +03:00
|
|
|
c = get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k_tensor)
|
2023-03-29 17:11:35 +03:00
|
|
|
|
2023-03-29 18:16:26 +03:00
|
|
|
uv = uv.to(dev)
|
|
|
|
f0 = f0.to(dev)
|
2023-03-29 17:11:35 +03:00
|
|
|
|
2023-06-22 03:21:39 +03:00
|
|
|
c = repeat_expand_2d(c.squeeze(0), f0.shape[1])
|
2023-03-18 19:43:36 +03:00
|
|
|
|
2023-11-08 13:54:13 +03:00
|
|
|
if (
|
|
|
|
self.settings.clusterInferRatio != 0
|
|
|
|
and hasattr(self, "cluster_model")
|
|
|
|
and self.cluster_model is not None
|
|
|
|
):
|
|
|
|
speaker = [
|
|
|
|
key
|
|
|
|
for key, value in self.settings.speakers.items()
|
|
|
|
if value == self.settings.dstId
|
|
|
|
]
|
2023-03-18 19:43:36 +03:00
|
|
|
if len(speaker) != 1:
|
2023-04-25 12:53:24 +03:00
|
|
|
pass
|
|
|
|
# print("not only one speaker found.", speaker)
|
2023-03-18 19:43:36 +03:00
|
|
|
else:
|
2023-11-08 13:54:13 +03:00
|
|
|
cluster_c = get_cluster_center_result(
|
|
|
|
self.cluster_model, c.cpu().numpy().T, speaker[0]
|
|
|
|
).T
|
2023-03-20 05:13:19 +03:00
|
|
|
cluster_c = torch.FloatTensor(cluster_c).to(dev)
|
2023-04-18 21:35:04 +03:00
|
|
|
c = c.to(dev)
|
2023-11-08 13:54:13 +03:00
|
|
|
c = (
|
|
|
|
self.settings.clusterInferRatio * cluster_c
|
|
|
|
+ (1 - self.settings.clusterInferRatio) * c
|
|
|
|
)
|
2023-03-18 19:43:36 +03:00
|
|
|
|
|
|
|
c = c.unsqueeze(0)
|
|
|
|
return c, f0, uv
|
|
|
|
|
2023-04-28 08:12:19 +03:00
|
|
|
def generate_input(
|
|
|
|
self,
|
|
|
|
newData: AudioInOut,
|
|
|
|
inputSize: int,
|
|
|
|
crossfadeSize: int,
|
|
|
|
solaSearchFrame: int = 0,
|
|
|
|
):
|
2023-03-18 19:43:36 +03:00
|
|
|
newData = newData.astype(np.float32) / self.hps.data.max_wav_value
|
|
|
|
|
2023-04-28 08:12:19 +03:00
|
|
|
if self.audio_buffer is not None:
|
2023-11-08 13:54:13 +03:00
|
|
|
self.audio_buffer = np.concatenate(
|
|
|
|
[self.audio_buffer, newData], 0
|
|
|
|
) # 過去のデータに連結
|
2023-03-18 19:43:36 +03:00
|
|
|
else:
|
|
|
|
self.audio_buffer = newData
|
|
|
|
|
2023-11-08 13:54:13 +03:00
|
|
|
convertSize = (
|
|
|
|
inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize
|
|
|
|
)
|
2023-03-18 19:43:36 +03:00
|
|
|
|
|
|
|
if convertSize % self.hps.data.hop_length != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
2023-11-08 13:54:13 +03:00
|
|
|
convertSize = convertSize + (
|
|
|
|
self.hps.data.hop_length - (convertSize % self.hps.data.hop_length)
|
|
|
|
)
|
2023-03-18 19:43:36 +03:00
|
|
|
|
2023-04-28 08:12:19 +03:00
|
|
|
convertOffset = -1 * convertSize
|
|
|
|
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
|
2023-03-18 19:43:36 +03:00
|
|
|
|
2023-04-28 08:12:19 +03:00
|
|
|
cropOffset = -1 * (inputSize + crossfadeSize)
|
|
|
|
cropEnd = -1 * (crossfadeSize)
|
|
|
|
crop = self.audio_buffer[cropOffset:cropEnd]
|
2023-03-18 19:43:36 +03:00
|
|
|
|
|
|
|
rms = np.sqrt(np.square(crop).mean(axis=0))
|
|
|
|
vol = max(rms, self.prevVol * 0.0)
|
|
|
|
self.prevVol = vol
|
|
|
|
|
|
|
|
c, f0, uv = self.get_unit_f0(self.audio_buffer, self.settings.tran)
|
|
|
|
return (c, f0, uv, convertSize, vol)
|
|
|
|
|
|
|
|
def _onnx_inference(self, data):
|
|
|
|
convertSize = data[3]
|
|
|
|
vol = data[4]
|
2023-04-28 08:12:19 +03:00
|
|
|
data = (
|
|
|
|
data[0],
|
|
|
|
data[1],
|
|
|
|
data[2],
|
|
|
|
)
|
2023-03-18 19:43:36 +03:00
|
|
|
|
|
|
|
if vol < self.settings.silentThreshold:
|
|
|
|
return np.zeros(convertSize).astype(np.int16)
|
|
|
|
|
|
|
|
c, f0, uv = [x.numpy() for x in data]
|
2023-03-29 17:11:35 +03:00
|
|
|
sid_target = torch.LongTensor([self.settings.dstId]).unsqueeze(0).numpy()
|
2023-04-28 08:12:19 +03:00
|
|
|
audio1 = (
|
|
|
|
self.onnx_session.run(
|
|
|
|
["audio"],
|
|
|
|
{
|
|
|
|
"c": c.astype(np.float32),
|
|
|
|
"f0": f0.astype(np.float32),
|
|
|
|
"uv": uv.astype(np.float32),
|
|
|
|
"g": sid_target.astype(np.int64),
|
2023-11-08 13:54:13 +03:00
|
|
|
"noise_scale": np.array([self.settings.noiseScale]).astype(
|
|
|
|
np.float32
|
|
|
|
),
|
2023-04-28 08:12:19 +03:00
|
|
|
# "predict_f0": np.array([self.settings.dstId]).astype(np.int64),
|
|
|
|
},
|
|
|
|
)[0][0, 0]
|
|
|
|
* self.hps.data.max_wav_value
|
|
|
|
)
|
2023-03-18 19:43:36 +03:00
|
|
|
|
|
|
|
audio1 = audio1 * vol
|
|
|
|
result = audio1
|
|
|
|
return result
|
|
|
|
|
|
|
|
def _pyTorch_inference(self, data):
|
|
|
|
if self.settings.gpu < 0 or self.gpu_num == 0:
|
|
|
|
dev = torch.device("cpu")
|
|
|
|
else:
|
|
|
|
dev = torch.device("cuda", index=self.settings.gpu)
|
|
|
|
|
|
|
|
convertSize = data[3]
|
|
|
|
vol = data[4]
|
2023-04-28 08:12:19 +03:00
|
|
|
data = (
|
|
|
|
data[0],
|
|
|
|
data[1],
|
|
|
|
data[2],
|
|
|
|
)
|
2023-03-18 19:43:36 +03:00
|
|
|
|
|
|
|
if vol < self.settings.silentThreshold:
|
|
|
|
return np.zeros(convertSize).astype(np.int16)
|
|
|
|
|
|
|
|
with torch.no_grad():
|
2023-04-28 08:12:19 +03:00
|
|
|
c, f0, uv = [x.to(dev) for x in data]
|
2023-03-18 19:43:36 +03:00
|
|
|
sid_target = torch.LongTensor([self.settings.dstId]).to(dev).unsqueeze(0)
|
|
|
|
self.net_g.to(dev)
|
|
|
|
# audio1 = self.net_g.infer(c, f0=f0, g=sid_target, uv=uv, predict_f0=True, noice_scale=0.1)[0][0, 0].data.float()
|
|
|
|
predict_f0_flag = True if self.settings.predictF0 == 1 else False
|
2023-04-28 08:12:19 +03:00
|
|
|
audio1 = self.net_g.infer(
|
|
|
|
c,
|
|
|
|
f0=f0,
|
|
|
|
g=sid_target,
|
|
|
|
uv=uv,
|
|
|
|
predict_f0=predict_f0_flag,
|
|
|
|
noice_scale=self.settings.noiseScale,
|
|
|
|
)
|
2023-03-18 19:43:36 +03:00
|
|
|
audio1 = audio1[0][0].data.float()
|
|
|
|
# audio1 = self.net_g.infer(c, f0=f0, g=sid_target, uv=uv, predict_f0=predict_f0_flag,
|
|
|
|
# noice_scale=self.settings.noiceScale)[0][0, 0].data.float()
|
|
|
|
audio1 = audio1 * self.hps.data.max_wav_value
|
|
|
|
|
|
|
|
audio1 = audio1 * vol
|
|
|
|
|
|
|
|
result = audio1.float().cpu().numpy()
|
|
|
|
|
|
|
|
# result = infer_tool.pad_array(result, length)
|
|
|
|
return result
|
|
|
|
|
|
|
|
def inference(self, data):
|
2023-06-22 01:40:06 +03:00
|
|
|
if self.slotInfo.isONNX:
|
2023-03-18 19:43:36 +03:00
|
|
|
audio = self._onnx_inference(data)
|
|
|
|
else:
|
|
|
|
audio = self._pyTorch_inference(data)
|
2023-04-14 22:42:54 +03:00
|
|
|
|
2023-03-18 19:43:36 +03:00
|
|
|
return audio
|
|
|
|
|
2023-04-10 18:21:17 +03:00
|
|
|
def __del__(self):
|
2023-03-18 19:43:36 +03:00
|
|
|
del self.net_g
|
|
|
|
del self.onnx_session
|
2023-04-10 18:21:17 +03:00
|
|
|
remove_path = os.path.join("so-vits-svc-40")
|
2023-04-28 08:12:19 +03:00
|
|
|
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
|
2023-04-10 18:21:17 +03:00
|
|
|
|
|
|
|
for key in list(sys.modules):
|
|
|
|
val = sys.modules.get(key)
|
|
|
|
try:
|
|
|
|
file_path = val.__file__
|
2023-04-11 01:37:39 +03:00
|
|
|
if file_path.find("so-vits-svc-40" + os.path.sep) >= 0:
|
2023-05-30 20:26:16 +03:00
|
|
|
# print("remove", key, file_path)
|
2023-04-10 18:21:17 +03:00
|
|
|
sys.modules.pop(key)
|
2023-04-28 08:12:19 +03:00
|
|
|
except Exception: # type:ignore
|
2023-04-10 18:21:17 +03:00
|
|
|
pass
|
2023-03-21 20:59:43 +03:00
|
|
|
|
2023-08-05 06:33:31 +03:00
|
|
|
def get_model_current(self):
|
2023-11-08 13:54:13 +03:00
|
|
|
return []
|
2023-08-05 06:33:31 +03:00
|
|
|
|
2023-03-21 20:59:43 +03:00
|
|
|
|
|
|
|
def resize_f0(x, target_len):
|
|
|
|
source = np.array(x)
|
|
|
|
source[source < 0.001] = np.nan
|
2023-04-28 08:12:19 +03:00
|
|
|
target = np.interp(
|
|
|
|
np.arange(0, len(source) * target_len, len(source)) / target_len,
|
|
|
|
np.arange(0, len(source)),
|
|
|
|
source,
|
|
|
|
)
|
2023-03-21 20:59:43 +03:00
|
|
|
res = np.nan_to_num(target)
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
|
|
|
|
if p_len is None:
|
|
|
|
p_len = wav_numpy.shape[0] // hop_length
|
|
|
|
f0, t = pw.dio(
|
|
|
|
wav_numpy.astype(np.double),
|
|
|
|
fs=sampling_rate,
|
|
|
|
f0_ceil=800,
|
|
|
|
frame_period=1000 * hop_length / sampling_rate,
|
|
|
|
)
|
|
|
|
f0 = pw.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
|
|
|
|
for index, pitch in enumerate(f0):
|
|
|
|
f0[index] = round(pitch, 1)
|
|
|
|
return resize_f0(f0, p_len)
|
|
|
|
|
|
|
|
|
|
|
|
def compute_f0_harvest(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
|
|
|
|
if p_len is None:
|
|
|
|
p_len = wav_numpy.shape[0] // hop_length
|
2023-04-28 08:12:19 +03:00
|
|
|
f0, t = pw.harvest(
|
|
|
|
wav_numpy.astype(np.double),
|
|
|
|
fs=sampling_rate,
|
|
|
|
frame_period=5.5,
|
|
|
|
f0_floor=71.0,
|
|
|
|
f0_ceil=1000.0,
|
|
|
|
)
|
2023-03-21 20:59:43 +03:00
|
|
|
|
|
|
|
for index, pitch in enumerate(f0):
|
|
|
|
f0[index] = round(pitch, 1)
|
|
|
|
return resize_f0(f0, p_len)
|
2023-04-03 11:33:28 +03:00
|
|
|
|
|
|
|
|
|
|
|
def get_hubert_content_layer9(hmodel, wav_16k_tensor):
|
|
|
|
feats = wav_16k_tensor
|
|
|
|
if feats.dim() == 2: # double channels
|
|
|
|
feats = feats.mean(-1)
|
|
|
|
assert feats.dim() == 1, feats.dim()
|
|
|
|
feats = feats.view(1, -1)
|
|
|
|
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
|
|
|
inputs = {
|
|
|
|
"source": feats.to(wav_16k_tensor.device),
|
|
|
|
"padding_mask": padding_mask.to(wav_16k_tensor.device),
|
|
|
|
"output_layer": 9, # layer 9
|
|
|
|
}
|
|
|
|
with torch.no_grad():
|
|
|
|
logits = hmodel.extract_features(**inputs)
|
|
|
|
|
|
|
|
return logits[0].transpose(1, 2)
|