2023-05-07 23:51:24 +03:00
|
|
|
import json
|
2023-03-24 02:56:15 +03:00
|
|
|
import sys
|
|
|
|
import os
|
2023-05-07 23:51:24 +03:00
|
|
|
from dataclasses import asdict
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from torchaudio.transforms import Resample
|
|
|
|
from torch.nn import functional as F
|
2023-04-28 08:49:17 +03:00
|
|
|
|
|
|
|
if sys.platform.startswith("darwin"):
|
2023-03-24 02:56:15 +03:00
|
|
|
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
|
|
|
|
if len(baseDir) != 1:
|
|
|
|
print("baseDir should be only one ", baseDir)
|
|
|
|
sys.exit()
|
|
|
|
modulePath = os.path.join(baseDir[0], "DDSP-SVC")
|
|
|
|
sys.path.append(modulePath)
|
|
|
|
else:
|
|
|
|
sys.path.append("DDSP-SVC")
|
|
|
|
|
2023-04-28 08:49:17 +03:00
|
|
|
import ddsp.vocoder as vo # type:ignore
|
|
|
|
from ddsp.core import upsample # type:ignore
|
|
|
|
from enhancer import Enhancer # type:ignore
|
2023-05-07 23:51:24 +03:00
|
|
|
from diffusion.infer_gt_mel import DiffGtMel # type: ignore
|
2023-04-17 03:45:12 +03:00
|
|
|
|
2023-05-07 23:51:24 +03:00
|
|
|
from voice_changer.utils.VoiceChangerModel import AudioInOut
|
|
|
|
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
|
|
|
|
from voice_changer.utils.LoadModelParams import LoadModelParams
|
|
|
|
from voice_changer.DDSP_SVC.DDSP_SVCSetting import DDSP_SVCSettings
|
|
|
|
from voice_changer.RVC.embedder.EmbedderManager import EmbedderManager
|
2023-04-17 03:45:12 +03:00
|
|
|
from Exceptions import NoModeLoadedException
|
2023-05-07 23:51:24 +03:00
|
|
|
from voice_changer.DDSP_SVC.SvcDDSP import SvcDDSP
|
|
|
|
|
2023-04-17 03:45:12 +03:00
|
|
|
|
2023-04-28 08:49:17 +03:00
|
|
|
providers = [
|
|
|
|
"OpenVINOExecutionProvider",
|
|
|
|
"CUDAExecutionProvider",
|
|
|
|
"DmlExecutionProvider",
|
|
|
|
"CPUExecutionProvider",
|
|
|
|
]
|
2023-03-24 02:56:15 +03:00
|
|
|
|
|
|
|
|
2023-05-07 23:51:24 +03:00
|
|
|
def phase_vocoder(a, b, fade_out, fade_in):
|
|
|
|
fa = torch.fft.rfft(a)
|
|
|
|
fb = torch.fft.rfft(b)
|
|
|
|
absab = torch.abs(fa) + torch.abs(fb)
|
|
|
|
n = a.shape[0]
|
|
|
|
if n % 2 == 0:
|
|
|
|
absab[1:-1] *= 2
|
|
|
|
else:
|
|
|
|
absab[1:] *= 2
|
|
|
|
phia = torch.angle(fa)
|
|
|
|
phib = torch.angle(fb)
|
|
|
|
deltaphase = phib - phia
|
|
|
|
deltaphase = deltaphase - 2 * np.pi * torch.floor(deltaphase / 2 / np.pi + 0.5)
|
|
|
|
w = 2 * np.pi * torch.arange(n // 2 + 1).to(a) + deltaphase
|
|
|
|
t = torch.arange(n).unsqueeze(-1).to(a) / n
|
|
|
|
result = (
|
|
|
|
a * (fade_out**2)
|
|
|
|
+ b * (fade_in**2)
|
|
|
|
+ torch.sum(absab * torch.cos(w * t + phia), -1) * fade_out * fade_in / n
|
|
|
|
)
|
|
|
|
return result
|
2023-03-24 02:56:15 +03:00
|
|
|
|
|
|
|
|
|
|
|
class DDSP_SVC:
|
2023-05-07 23:51:24 +03:00
|
|
|
initialLoad: bool = True
|
|
|
|
settings: DDSP_SVCSettings = DDSP_SVCSettings()
|
|
|
|
diff_model: DiffGtMel = DiffGtMel()
|
|
|
|
svc_model: SvcDDSP = SvcDDSP()
|
|
|
|
# diff_model: DiffGtMel = DiffGtMel()
|
|
|
|
|
2023-04-28 08:49:17 +03:00
|
|
|
audio_buffer: AudioInOut | None = None
|
2023-05-07 23:51:24 +03:00
|
|
|
prevVol: float = 0
|
|
|
|
# resample_kernel = {}
|
2023-04-28 08:49:17 +03:00
|
|
|
|
|
|
|
def __init__(self, params: VoiceChangerParams):
|
2023-03-24 02:56:15 +03:00
|
|
|
self.gpu_num = torch.cuda.device_count()
|
|
|
|
self.params = params
|
2023-05-07 23:51:24 +03:00
|
|
|
self.svc_model.setVCParams(params)
|
|
|
|
EmbedderManager.initialize(params)
|
2023-03-24 02:56:15 +03:00
|
|
|
print("DDSP-SVC initialization:", params)
|
|
|
|
|
2023-05-07 23:51:24 +03:00
|
|
|
# def useDevice(self):
|
|
|
|
# if self.settings.gpu >= 0 and torch.cuda.is_available():
|
|
|
|
# return torch.device("cuda", index=self.settings.gpu)
|
|
|
|
# else:
|
|
|
|
# return torch.device("cpu")
|
2023-04-16 22:37:22 +03:00
|
|
|
|
2023-04-28 08:49:17 +03:00
|
|
|
def loadModel(self, props: LoadModelParams):
|
2023-05-07 23:51:24 +03:00
|
|
|
# target_slot_idx = props.slot
|
|
|
|
self.device = torch.device("cuda", index=0)
|
|
|
|
params = props.params
|
2023-03-24 02:56:15 +03:00
|
|
|
|
2023-05-07 23:51:24 +03:00
|
|
|
modelFile = params["files"]["ddspSvcModel"]
|
|
|
|
diffusionFile = params["files"]["ddspSvcDiffusion"]
|
|
|
|
self.svc_model.update_model(modelFile)
|
|
|
|
|
|
|
|
print("diffusion file", diffusionFile)
|
|
|
|
self.diff_model.flush_model(diffusionFile, ddsp_config=self.svc_model.args)
|
|
|
|
|
|
|
|
print("params:", params)
|
|
|
|
# print("params_arg:", self.args)
|
2023-03-29 17:11:03 +03:00
|
|
|
|
2023-05-07 23:51:24 +03:00
|
|
|
# self.settings.pyTorchModelFile = props.files.pyTorchModelFilename
|
|
|
|
# # model
|
|
|
|
# model, args = vo.load_model(
|
|
|
|
# self.settings.pyTorchModelFile, device=self.useDevice()
|
|
|
|
# )
|
|
|
|
# self.model = model
|
|
|
|
# self.args = args
|
|
|
|
# self.sampling_rate = args.data.sampling_rate
|
|
|
|
# self.hop_size = int(
|
|
|
|
# self.args.data.block_size
|
|
|
|
# * self.sampling_rate
|
|
|
|
# / self.args.data.sampling_rate
|
2023-03-29 17:11:03 +03:00
|
|
|
# )
|
2023-03-24 02:56:15 +03:00
|
|
|
|
2023-05-07 23:51:24 +03:00
|
|
|
# # hubert
|
|
|
|
# self.vec_path = self.params.hubert_soft
|
|
|
|
# self.encoder = vo.Units_Encoder(
|
|
|
|
# self.args.data.encoder,
|
|
|
|
# self.vec_path,
|
|
|
|
# self.args.data.encoder_sample_rate,
|
|
|
|
# self.args.data.encoder_hop_size,
|
|
|
|
# device=self.useDevice(),
|
|
|
|
# )
|
|
|
|
|
|
|
|
# # f0dec
|
|
|
|
# self.f0_detector = vo.F0_Extractor(
|
|
|
|
# # "crepe",
|
|
|
|
# self.settings.f0Detector,
|
|
|
|
# self.sampling_rate,
|
|
|
|
# self.hop_size,
|
|
|
|
# float(50),
|
|
|
|
# float(1100),
|
|
|
|
# )
|
|
|
|
|
|
|
|
# self.volume_extractor = vo.Volume_Extractor(self.hop_size)
|
|
|
|
# self.enhancer_path = self.params.nsf_hifigan
|
|
|
|
# self.enhancer = Enhancer(
|
|
|
|
# self.args.enhancer.type, self.enhancer_path, device=self.useDevice()
|
|
|
|
# )
|
2023-03-24 02:56:15 +03:00
|
|
|
return self.get_info()
|
|
|
|
|
2023-04-28 08:49:17 +03:00
|
|
|
def update_settings(self, key: str, val: int | float | str):
|
2023-05-07 23:51:24 +03:00
|
|
|
# if key == "onnxExecutionProvider" and self.onnx_session is not None:
|
|
|
|
# if val == "CUDAExecutionProvider":
|
|
|
|
# if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
|
|
|
|
# self.settings.gpu = 0
|
|
|
|
# provider_options = [{"device_id": self.settings.gpu}]
|
|
|
|
# self.onnx_session.set_providers(
|
|
|
|
# providers=[val], provider_options=provider_options
|
|
|
|
# )
|
|
|
|
# else:
|
|
|
|
# self.onnx_session.set_providers(providers=[val])
|
|
|
|
# elif key in self.settings.intData:
|
|
|
|
# val = int(val)
|
|
|
|
# setattr(self.settings, key, val)
|
|
|
|
# if (
|
|
|
|
# key == "gpu"
|
|
|
|
# and val >= 0
|
|
|
|
# and val < self.gpu_num
|
|
|
|
# and self.onnx_session is not None
|
|
|
|
# ):
|
|
|
|
# providers = self.onnx_session.get_providers()
|
|
|
|
# print("Providers:", providers)
|
|
|
|
# if "CUDAExecutionProvider" in providers:
|
|
|
|
# provider_options = [{"device_id": self.settings.gpu}]
|
|
|
|
# self.onnx_session.set_providers(
|
|
|
|
# providers=["CUDAExecutionProvider"],
|
|
|
|
# provider_options=provider_options,
|
|
|
|
# )
|
|
|
|
# if key == "gpu" and len(self.settings.pyTorchModelFile) > 0:
|
|
|
|
# model, _args = vo.load_model(
|
|
|
|
# self.settings.pyTorchModelFile, device=self.useDevice()
|
|
|
|
# )
|
|
|
|
# self.model = model
|
|
|
|
# self.enhancer = Enhancer(
|
|
|
|
# self.args.enhancer.type, self.enhancer_path, device=self.useDevice()
|
|
|
|
# )
|
|
|
|
# self.encoder = vo.Units_Encoder(
|
|
|
|
# self.args.data.encoder,
|
|
|
|
# self.vec_path,
|
|
|
|
# self.args.data.encoder_sample_rate,
|
|
|
|
# self.args.data.encoder_hop_size,
|
|
|
|
# device=self.useDevice(),
|
|
|
|
# )
|
|
|
|
|
|
|
|
# elif key in self.settings.floatData:
|
|
|
|
# setattr(self.settings, key, float(val))
|
|
|
|
# elif key in self.settings.strData:
|
|
|
|
# setattr(self.settings, key, str(val))
|
|
|
|
# if key == "f0Detector":
|
|
|
|
# print("f0Detector update", val)
|
|
|
|
# # if val == "dio":
|
|
|
|
# # val = "parselmouth"
|
|
|
|
|
|
|
|
# if hasattr(self, "sampling_rate") is False:
|
|
|
|
# self.sampling_rate = 44100
|
|
|
|
# self.hop_size = 512
|
|
|
|
|
|
|
|
# self.f0_detector = vo.F0_Extractor(
|
|
|
|
# val, self.sampling_rate, self.hop_size, float(50), float(1100)
|
|
|
|
# )
|
|
|
|
# else:
|
|
|
|
# return False
|
2023-03-24 02:56:15 +03:00
|
|
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
def get_info(self):
|
2023-05-07 23:51:24 +03:00
|
|
|
# data = asdict(self.settings)
|
|
|
|
|
|
|
|
# data["onnxExecutionProviders"] = (
|
|
|
|
# self.onnx_session.get_providers() if self.onnx_session is not None else []
|
|
|
|
# )
|
|
|
|
# files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
|
|
|
# for f in files:
|
|
|
|
# if data[f] is not None and os.path.exists(data[f]):
|
|
|
|
# data[f] = os.path.basename(data[f])
|
|
|
|
# else:
|
|
|
|
# data[f] = ""
|
|
|
|
|
|
|
|
data = {}
|
2023-03-24 02:56:15 +03:00
|
|
|
return data
|
|
|
|
|
|
|
|
def get_processing_sampling_rate(self):
|
2023-05-07 23:51:24 +03:00
|
|
|
return self.svc_model.args.data.sampling_rate
|
2023-03-24 02:56:15 +03:00
|
|
|
|
2023-04-28 08:49:17 +03:00
|
|
|
def generate_input(
|
|
|
|
self,
|
|
|
|
newData: AudioInOut,
|
|
|
|
inputSize: int,
|
|
|
|
crossfadeSize: int,
|
|
|
|
solaSearchFrame: int = 0,
|
|
|
|
):
|
2023-03-24 03:38:23 +03:00
|
|
|
newData = newData.astype(np.float32) / 32768.0
|
2023-05-07 23:51:24 +03:00
|
|
|
# newData = newData.astype(np.float32)
|
2023-03-24 02:56:15 +03:00
|
|
|
|
2023-04-28 08:49:17 +03:00
|
|
|
if self.audio_buffer is not None:
|
|
|
|
self.audio_buffer = np.concatenate(
|
|
|
|
[self.audio_buffer, newData], 0
|
|
|
|
) # 過去のデータに連結
|
2023-03-24 02:56:15 +03:00
|
|
|
else:
|
|
|
|
self.audio_buffer = newData
|
|
|
|
|
2023-04-28 08:49:17 +03:00
|
|
|
convertSize = (
|
|
|
|
inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize
|
|
|
|
)
|
2023-04-16 15:34:00 +03:00
|
|
|
|
2023-05-07 23:51:24 +03:00
|
|
|
# if convertSize % self.hop_size != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
|
|
|
# convertSize = convertSize + (self.hop_size - (convertSize % self.hop_size))
|
2023-03-24 02:56:15 +03:00
|
|
|
|
2023-04-28 08:49:17 +03:00
|
|
|
convertOffset = -1 * convertSize
|
|
|
|
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
|
2023-03-24 02:56:15 +03:00
|
|
|
|
2023-05-07 23:51:24 +03:00
|
|
|
# # f0
|
|
|
|
# f0 = self.f0_detector.extract(
|
|
|
|
# self.audio_buffer * 32768.0,
|
|
|
|
# uv_interp=True,
|
|
|
|
# silence_front=self.settings.extraConvertSize / self.sampling_rate,
|
|
|
|
# )
|
|
|
|
# f0 = torch.from_numpy(f0).float().unsqueeze(-1).unsqueeze(0)
|
|
|
|
# f0 = f0 * 2 ** (float(self.settings.tran) / 12)
|
|
|
|
|
|
|
|
# # volume, mask
|
|
|
|
# volume = self.volume_extractor.extract(self.audio_buffer)
|
|
|
|
# mask = (volume > 10 ** (float(-60) / 20)).astype("float")
|
|
|
|
# mask = np.pad(mask, (4, 4), constant_values=(mask[0], mask[-1]))
|
|
|
|
# mask = np.array(
|
|
|
|
# [np.max(mask[n : n + 9]) for n in range(len(mask) - 8)] # noqa: E203
|
|
|
|
# )
|
|
|
|
# mask = torch.from_numpy(mask).float().unsqueeze(-1).unsqueeze(0)
|
|
|
|
# mask = upsample(mask, self.args.data.block_size).squeeze(-1)
|
|
|
|
# volume = torch.from_numpy(volume).float().unsqueeze(-1).unsqueeze(0)
|
|
|
|
|
|
|
|
# # embed
|
|
|
|
# audio = (
|
|
|
|
# torch.from_numpy(self.audio_buffer)
|
|
|
|
# .float()
|
|
|
|
# .to(self.useDevice())
|
|
|
|
# .unsqueeze(0)
|
|
|
|
# )
|
|
|
|
# seg_units = self.encoder.encode(audio, self.sampling_rate, self.hop_size)
|
2023-03-24 04:27:45 +03:00
|
|
|
|
2023-05-07 23:51:24 +03:00
|
|
|
# cropOffset = -1 * (inputSize + crossfadeSize)
|
|
|
|
# cropEnd = -1 * (crossfadeSize)
|
|
|
|
# crop = self.audio_buffer[cropOffset:cropEnd]
|
2023-03-24 02:56:15 +03:00
|
|
|
|
2023-05-07 23:51:24 +03:00
|
|
|
# rms = np.sqrt(np.square(crop).mean(axis=0))
|
|
|
|
# vol = max(rms, self.prevVol * 0.0)
|
|
|
|
# self.prevVol = vol
|
2023-03-24 02:56:15 +03:00
|
|
|
|
2023-05-07 23:51:24 +03:00
|
|
|
return (self.audio_buffer, inputSize, crossfadeSize, solaSearchFrame)
|
2023-03-24 02:56:15 +03:00
|
|
|
|
2023-05-07 23:51:24 +03:00
|
|
|
# def _onnx_inference(self, data):
|
|
|
|
# if hasattr(self, "onnx_session") is False or self.onnx_session is None:
|
|
|
|
# print("[Voice Changer] No onnx session.")
|
|
|
|
# raise NoModeLoadedException("ONNX")
|
2023-03-24 02:56:15 +03:00
|
|
|
|
2023-05-07 23:51:24 +03:00
|
|
|
# raise NoModeLoadedException("ONNX")
|
2023-03-24 02:56:15 +03:00
|
|
|
|
|
|
|
def _pyTorch_inference(self, data):
|
2023-05-07 23:51:24 +03:00
|
|
|
# if hasattr(self, "model") is False or self.model is None:
|
|
|
|
# print("[Voice Changer] No pyTorch session.")
|
|
|
|
# raise NoModeLoadedException("pytorch")
|
|
|
|
|
|
|
|
input_wav = data[0]
|
|
|
|
# inputSize = data[1]
|
|
|
|
# crossfadeSize = data[2]
|
|
|
|
# solaSearchFrame = data[3]
|
|
|
|
# last_delay_frame = int(0.02 * self.svc_model.args.data.sampling_rate)
|
|
|
|
|
|
|
|
# fade_in_window = (
|
|
|
|
# torch.sin(
|
|
|
|
# np.pi * torch.arange(0, 1, 1 / crossfadeSize, device=self.device) / 2
|
|
|
|
# )
|
|
|
|
# ** 2
|
|
|
|
# )
|
|
|
|
# fade_out_window = 1 - fade_in_window
|
|
|
|
|
|
|
|
_audio, _model_sr = self.svc_model.infer(
|
|
|
|
input_wav,
|
|
|
|
44100,
|
|
|
|
spk_id=1,
|
|
|
|
threhold=-45,
|
|
|
|
pitch_adjust=10,
|
|
|
|
use_spk_mix=False,
|
|
|
|
spk_mix_dict=None,
|
|
|
|
use_enhancer=False,
|
|
|
|
pitch_extractor_type="harvest",
|
|
|
|
f0_min=50,
|
|
|
|
f0_max=1100,
|
|
|
|
safe_prefix_pad_length=0, # TBD なにこれ?
|
|
|
|
diff_model=self.diff_model,
|
|
|
|
diff_acc=20, # TBD なにこれ?
|
|
|
|
diff_spk_id=1,
|
|
|
|
diff_use=True,
|
|
|
|
diff_use_dpm=False, # TBD なにこれ?
|
|
|
|
k_step=120, # TBD なにこれ?
|
|
|
|
diff_silence=False, # TBD なにこれ?
|
|
|
|
)
|
|
|
|
|
|
|
|
print(" _model_sr", _model_sr)
|
|
|
|
print("_audio", _audio.shape)
|
|
|
|
print("_audio", _audio)
|
|
|
|
return _audio.cpu().numpy() * 32768.0
|
|
|
|
|
|
|
|
# if _model_sr != self.svc_model.args.data.sampling_rate:
|
|
|
|
# key_str = str(_model_sr) + "_" + str(self.svc_model.args.data.sampling_rate)
|
|
|
|
# if key_str not in self.resample_kernel:
|
|
|
|
# self.resample_kernel[key_str] = Resample(
|
|
|
|
# _model_sr,
|
|
|
|
# self.svc_model.args.data.sampling_rate,
|
|
|
|
# lowpass_filter_width=128,
|
|
|
|
# ).to(self.device)
|
|
|
|
# _audio = self.resample_kernel[key_str](_audio)
|
|
|
|
# temp_wav = _audio[
|
|
|
|
# -inputSize
|
|
|
|
# - crossfadeSize
|
|
|
|
# - solaSearchFrame
|
|
|
|
# - last_delay_frame : -last_delay_frame
|
|
|
|
# ]
|
|
|
|
|
|
|
|
# # sola shift
|
|
|
|
# conv_input = temp_wav[None, None, : crossfadeSize + solaSearchFrame]
|
|
|
|
# cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :])
|
|
|
|
# cor_den = torch.sqrt(
|
|
|
|
# F.conv1d(
|
|
|
|
# conv_input**2,
|
|
|
|
# torch.ones(1, 1, crossfadeSize, device=self.device),
|
|
|
|
# )
|
|
|
|
# + 1e-8
|
|
|
|
# )
|
|
|
|
# sola_shift = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
|
|
|
|
# temp_wav = temp_wav[sola_shift : sola_shift + inputSize + crossfadeSize]
|
|
|
|
# print("sola_shift: " + str(int(sola_shift)))
|
|
|
|
|
|
|
|
# # phase vocoder
|
|
|
|
# # if self.config.use_phase_vocoder:
|
|
|
|
# if False:
|
|
|
|
# temp_wav[:crossfadeSize] = phase_vocoder(
|
|
|
|
# self.sola_buffer,
|
|
|
|
# temp_wav[:crossfadeSize],
|
|
|
|
# fade_out_window,
|
|
|
|
# fade_in_window,
|
|
|
|
# )
|
|
|
|
# else:
|
|
|
|
# temp_wav[:crossfadeSize] *= fade_in_window
|
|
|
|
# temp_wav[:crossfadeSize] += self.sola_buffer * fade_out_window
|
|
|
|
|
|
|
|
# self.sola_buffer = temp_wav[-crossfadeSize:]
|
|
|
|
|
|
|
|
# result = temp_wav[:-crossfadeSize, None].repeat(1, 2).cpu().numpy()
|
|
|
|
|
|
|
|
###########################################
|
|
|
|
# c = data[0].to(self.useDevice())
|
|
|
|
# f0 = data[1].to(self.useDevice())
|
|
|
|
# volume = data[2].to(self.useDevice())
|
|
|
|
# mask = data[3].to(self.useDevice())
|
|
|
|
|
|
|
|
# # convertSize = data[4]
|
|
|
|
# # vol = data[5]
|
|
|
|
# # if vol < self.settings.silentThreshold:
|
|
|
|
# # print("threshold")
|
|
|
|
# # return np.zeros(convertSize).astype(np.int16)
|
|
|
|
|
|
|
|
# with torch.no_grad():
|
|
|
|
# spk_id = torch.LongTensor(np.array([[self.settings.dstId]])).to(
|
|
|
|
# self.useDevice()
|
|
|
|
# )
|
|
|
|
# seg_output, _, (s_h, s_n) = self.model(
|
|
|
|
# c, f0, volume, spk_id=spk_id, spk_mix_dict=None
|
|
|
|
# )
|
|
|
|
# seg_output *= mask
|
|
|
|
|
|
|
|
# if self.settings.enableEnhancer:
|
|
|
|
# seg_output, output_sample_rate = self.enhancer.enhance(
|
|
|
|
# seg_output,
|
|
|
|
# self.args.data.sampling_rate,
|
|
|
|
# f0,
|
|
|
|
# self.args.data.block_size,
|
|
|
|
# # adaptive_key=float(self.settings.enhancerTune),
|
|
|
|
# adaptive_key="auto",
|
|
|
|
# silence_front=self.settings.extraConvertSize / self.sampling_rate,
|
|
|
|
# )
|
|
|
|
|
|
|
|
# result = seg_output.squeeze().cpu().numpy() * 32768.0
|
|
|
|
|
|
|
|
# return np.array(result).astype(np.int16)
|
2023-03-24 02:56:15 +03:00
|
|
|
|
|
|
|
def inference(self, data):
|
|
|
|
if self.settings.framework == "ONNX":
|
|
|
|
audio = self._onnx_inference(data)
|
|
|
|
else:
|
|
|
|
audio = self._pyTorch_inference(data)
|
|
|
|
return audio
|
|
|
|
|
2023-05-07 23:51:24 +03:00
|
|
|
# def destroy(self):
|
|
|
|
# del self.net_g
|
|
|
|
# del self.onnx_session
|
2023-03-24 02:56:15 +03:00
|
|
|
|
2023-04-10 18:21:17 +03:00
|
|
|
def __del__(self):
|
|
|
|
del self.net_g
|
|
|
|
del self.onnx_session
|
|
|
|
|
2023-04-16 15:34:00 +03:00
|
|
|
remove_path = os.path.join("DDSP-SVC")
|
2023-04-28 08:49:17 +03:00
|
|
|
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
|
2023-04-16 15:34:00 +03:00
|
|
|
|
|
|
|
for key in list(sys.modules):
|
|
|
|
val = sys.modules.get(key)
|
|
|
|
try:
|
|
|
|
file_path = val.__file__
|
|
|
|
if file_path.find("DDSP-SVC" + os.path.sep) >= 0:
|
|
|
|
print("remove", key, file_path)
|
|
|
|
sys.modules.pop(key)
|
2023-04-28 08:49:17 +03:00
|
|
|
except: # type:ignore
|
2023-04-16 15:34:00 +03:00
|
|
|
pass
|