2022-10-29 18:58:21 +03:00
|
|
|
import torch
|
|
|
|
from scipy.io.wavfile import write, read
|
|
|
|
import numpy as np
|
2022-11-12 04:27:34 +03:00
|
|
|
import traceback
|
2022-10-29 18:58:21 +03:00
|
|
|
|
|
|
|
import utils
|
|
|
|
import commons
|
|
|
|
from models import SynthesizerTrn
|
|
|
|
from text.symbols import symbols
|
|
|
|
from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
|
|
|
from mel_processing import spectrogram_torch
|
|
|
|
from text import text_to_sequence, cleaned_text_to_sequence
|
|
|
|
|
|
|
|
|
|
|
|
class VoiceChanger():
|
|
|
|
def __init__(self, config, model):
|
|
|
|
self.hps = utils.get_hparams_from_file(config)
|
|
|
|
self.net_g = SynthesizerTrn(
|
|
|
|
len(symbols),
|
|
|
|
self.hps.data.filter_length // 2 + 1,
|
|
|
|
self.hps.train.segment_size // self.hps.data.hop_length,
|
|
|
|
n_speakers=self.hps.data.n_speakers,
|
|
|
|
**self.hps.model)
|
|
|
|
self.net_g.eval()
|
|
|
|
self.gpu_num = torch.cuda.device_count()
|
|
|
|
utils.load_checkpoint( model, self.net_g, None)
|
2022-11-02 22:05:42 +03:00
|
|
|
|
|
|
|
text_norm = text_to_sequence("a", self.hps.data.text_cleaners)
|
|
|
|
text_norm = commons.intersperse(text_norm, 0)
|
|
|
|
self.text_norm = torch.LongTensor(text_norm)
|
|
|
|
self.audio_buffer = torch.zeros(1, 0)
|
|
|
|
self.prev_audio = np.zeros(1)
|
|
|
|
|
2022-10-29 18:58:21 +03:00
|
|
|
print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num})")
|
|
|
|
|
|
|
|
def destroy(self):
|
|
|
|
del self.net_g
|
|
|
|
|
2022-11-02 22:05:42 +03:00
|
|
|
def on_request(self, gpu, srcId, dstId, timestamp, prefixChunkSize, wav):
|
2022-10-29 18:58:21 +03:00
|
|
|
unpackedData = wav
|
2022-11-02 22:05:42 +03:00
|
|
|
convertSize = unpackedData.shape[0] + (prefixChunkSize * 512)
|
2022-10-29 18:58:21 +03:00
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
|
|
audio = torch.FloatTensor(unpackedData.astype(np.float32))
|
|
|
|
audio_norm = audio /self.hps.data.max_wav_value
|
|
|
|
audio_norm = audio_norm.unsqueeze(0)
|
2022-11-02 22:05:42 +03:00
|
|
|
self.audio_buffer = torch.cat([self.audio_buffer, audio_norm], axis=1)
|
|
|
|
audio_norm = self.audio_buffer[:,-convertSize:]
|
|
|
|
self.audio_buffer = audio_norm
|
2022-10-29 18:58:21 +03:00
|
|
|
|
|
|
|
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
|
|
|
|
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
|
|
|
center=False)
|
|
|
|
spec = torch.squeeze(spec, 0)
|
|
|
|
sid = torch.LongTensor([int(srcId)])
|
|
|
|
|
2022-11-02 22:05:42 +03:00
|
|
|
data = (self.text_norm , spec, audio_norm, sid)
|
2022-10-29 18:58:21 +03:00
|
|
|
data = TextAudioSpeakerCollate()([data])
|
|
|
|
|
|
|
|
if gpu<0 or self.gpu_num==0 :
|
|
|
|
with torch.no_grad():
|
|
|
|
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cpu() for x in data]
|
|
|
|
sid_tgt1 = torch.LongTensor([dstId]).cpu()
|
|
|
|
audio1 = (self.net_g.cpu().voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy()
|
|
|
|
else:
|
|
|
|
with torch.no_grad():
|
|
|
|
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda(gpu) for x in data]
|
|
|
|
sid_tgt1 = torch.LongTensor([dstId]).cuda(gpu)
|
|
|
|
audio1 = (self.net_g.cuda(gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy()
|
2022-11-02 22:05:42 +03:00
|
|
|
|
|
|
|
# if len(self.prev_audio) > unpackedData.shape[0]:
|
|
|
|
# prevLastFragment = self.prev_audio[-unpackedData.shape[0]:]
|
|
|
|
# curSecondLastFragment = audio1[-unpackedData.shape[0]*2:-unpackedData.shape[0]]
|
|
|
|
# print("prev, cur", prevLastFragment.shape, curSecondLastFragment.shape)
|
|
|
|
# self.prev_audio = audio1
|
|
|
|
# print("self.prev_audio", self.prev_audio.shape)
|
|
|
|
|
|
|
|
audio1 = audio1[-unpackedData.shape[0]*2:]
|
|
|
|
|
|
|
|
|
2022-10-29 18:58:21 +03:00
|
|
|
except Exception as e:
|
|
|
|
print("VC PROCESSING!!!! EXCEPTION!!!", e)
|
|
|
|
print(traceback.format_exc())
|
|
|
|
|
|
|
|
audio1 = audio1.astype(np.int16)
|
|
|
|
return audio1
|