voice-changer/server/voice_changer/SoVitsSvc40v2/SoVitsSvc40v2.py

314 lines
12 KiB
Python
Raw Normal View History

2023-03-10 19:56:10 +03:00
import sys
import os
if sys.platform.startswith('darwin'):
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
if len(baseDir) != 1:
print("baseDir should be only one ", baseDir)
sys.exit()
modulePath = os.path.join(baseDir[0], "so-vits-svc-40v2")
sys.path.append(modulePath)
else:
sys.path.append("so-vits-svc-40v2")
import io
from dataclasses import dataclass, asdict, field
2023-03-10 19:56:10 +03:00
from functools import reduce
import numpy as np
import torch
import onnxruntime
import pyworld as pw
from models import SynthesizerTrn
import cluster
2023-03-10 19:56:10 +03:00
import utils
from fairseq import checkpoint_utils
import librosa
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
@dataclass
class SoVitsSvc40v2Settings():
gpu: int = 0
dstId: int = 0
2023-03-10 19:56:10 +03:00
f0Detector: str = "dio" # dio or harvest
tran: int = 20
noiceScale: float = 0.3
predictF0: int = 0 # 0:False, 1:True
silentThreshold: float = 0.00001
extraConvertSize: int = 1024 * 32
clusterInferRatio: float = 0.1
2023-03-10 19:56:10 +03:00
framework: str = "PyTorch" # PyTorch or ONNX
pyTorchModelFile: str = ""
onnxModelFile: str = ""
configFile: str = ""
speakers: dict[str, int] = field(
default_factory=lambda: {}
)
2023-03-10 19:56:10 +03:00
# ↓mutableな物だけ列挙
intData = ["gpu", "dstId", "tran", "predictF0", "extraConvertSize"]
floatData = ["noiceScale", "silentThreshold", "clusterInferRatio"]
2023-03-10 19:56:10 +03:00
strData = ["framework", "f0Detector"]
class SoVitsSvc40v2:
2023-03-16 02:11:38 +03:00
def __init__(self, params):
2023-03-10 19:56:10 +03:00
self.settings = SoVitsSvc40v2Settings()
self.net_g = None
self.onnx_session = None
self.raw_path = io.BytesIO()
self.gpu_num = torch.cuda.device_count()
self.prevVol = 0
2023-03-16 02:11:38 +03:00
self.params = params
print("so-vits-initialization:", params)
2023-03-10 19:56:10 +03:00
2023-03-16 02:11:38 +03:00
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None, clusterTorchModel: str = None):
2023-03-10 19:56:10 +03:00
self.settings.configFile = config
self.hps = utils.get_hparams_from_file(config)
self.settings.speakers = self.hps.spk
2023-03-10 19:56:10 +03:00
# hubert model
try:
2023-03-16 02:11:38 +03:00
# if sys.platform.startswith('darwin'):
# vec_path = os.path.join(sys._MEIPASS, "hubert/checkpoint_best_legacy_500.pt")
# else:
# vec_path = "hubert/checkpoint_best_legacy_500.pt"
vec_path = self.params["hubert"]
2023-03-15 18:46:30 +03:00
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
[vec_path],
suffix="",
)
model = models[0]
model.eval()
self.hubert_model = model.cpu()
except Exception as e:
print("EXCEPTION during loading hubert/contentvec model", e)
# cluster
try:
2023-03-14 05:12:58 +03:00
if clusterTorchModel != None and os.path.exists(clusterTorchModel):
self.cluster_model = cluster.get_cluster_model(clusterTorchModel)
else:
self.cluster_model = None
except Exception as e:
print("EXCEPTION during loading cluster model ", e)
2023-03-10 19:56:10 +03:00
if pyTorch_model_file != None:
self.settings.pyTorchModelFile = pyTorch_model_file
if onnx_model_file:
self.settings.onnxModelFile = onnx_model_file
# PyTorchモデル生成
if pyTorch_model_file != None:
self.net_g = SynthesizerTrn(
self.hps
)
self.net_g.eval()
utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
2023-03-18 00:30:50 +03:00
# ONNXモデル生成
if onnx_model_file != None:
ort_options = onnxruntime.SessionOptions()
ort_options.intra_op_num_threads = 8
self.onnx_session = onnxruntime.InferenceSession(
onnx_model_file,
providers=providers
)
input_info = self.onnx_session.get_inputs()
2023-03-10 19:56:10 +03:00
return self.get_info()
def update_setteings(self, key: str, val: any):
if key == "onnxExecutionProvider" and self.onnx_session != None:
if val == "CUDAExecutionProvider":
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
self.settings.gpu = 0
provider_options = [{'device_id': self.settings.gpu}]
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
else:
self.onnx_session.set_providers(providers=[val])
elif key in self.settings.intData:
setattr(self.settings, key, int(val))
if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None:
providers = self.onnx_session.get_providers()
print("Providers:", providers)
if "CUDAExecutionProvider" in providers:
provider_options = [{'device_id': self.settings.gpu}]
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
else:
return False
return True
def get_info(self):
data = asdict(self.settings)
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session != None else []
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
for f in files:
if data[f] != None and os.path.exists(data[f]):
data[f] = os.path.basename(data[f])
else:
data[f] = ""
return data
def get_processing_sampling_rate(self):
return self.hps.data.sampling_rate
def get_unit_f0(self, audio_buffer, tran):
wav_44k = audio_buffer
# f0 = utils.compute_f0_parselmouth(wav, sampling_rate=self.target_sample, hop_length=self.hop_size)
f0 = utils.compute_f0_dio(wav_44k, sampling_rate=self.hps.data.sampling_rate, hop_length=self.hps.data.hop_length)
if wav_44k.shape[0] % self.hps.data.hop_length != 0:
print(f" !!! !!! !!! wav size not multiple of hopsize: {wav_44k.shape[0] / self.hps.data.hop_length}")
2023-03-10 19:56:10 +03:00
f0, uv = utils.interpolate_f0(f0)
f0 = torch.FloatTensor(f0)
uv = torch.FloatTensor(uv)
f0 = f0 * 2 ** (tran / 12)
f0 = f0.unsqueeze(0)
uv = uv.unsqueeze(0)
# wav16k = librosa.resample(audio_buffer, orig_sr=24000, target_sr=16000)
wav16k = librosa.resample(audio_buffer, orig_sr=self.hps.data.sampling_rate, target_sr=16000)
wav16k = torch.from_numpy(wav16k)
2023-03-18 00:30:50 +03:00
if (self.settings.gpu < 0 or self.gpu_num == 0) or self.settings.framework == "ONNX":
dev = torch.device("cpu")
else:
dev = torch.device("cuda", index=self.settings.gpu)
self.hubert_model = self.hubert_model.to(dev)
wav16k = wav16k.to(dev)
uv = uv.to(dev)
f0 = f0.to(dev)
2023-03-10 19:56:10 +03:00
c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k)
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
2023-03-14 05:12:58 +03:00
if self.settings.clusterInferRatio != 0 and hasattr(self, "cluster_model") and self.cluster_model != None:
2023-03-14 16:40:32 +03:00
speaker = [key for key, value in self.settings.speakers.items() if value == self.settings.dstId]
if len(speaker) != 1:
print("not only one speaker found.", speaker)
else:
cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker[0]).T
# cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, self.settings.dstId).T
cluster_c = torch.FloatTensor(cluster_c).cpu()
c = self.settings.clusterInferRatio * cluster_c + (1 - self.settings.clusterInferRatio) * c
2023-03-10 19:56:10 +03:00
c = c.unsqueeze(0)
return c, f0, uv
def generate_input(self, newData: any, inputSize: int, crossfadeSize: int):
2023-03-10 19:56:10 +03:00
newData = newData.astype(np.float32) / self.hps.data.max_wav_value
if hasattr(self, "audio_buffer"):
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
else:
self.audio_buffer = newData
convertSize = inputSize + crossfadeSize + self.settings.extraConvertSize
2023-03-10 19:56:10 +03:00
if convertSize % self.hps.data.hop_length != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
convertSize = convertSize + (self.hps.data.hop_length - (convertSize % self.hps.data.hop_length))
self.audio_buffer = self.audio_buffer[-1 * convertSize:] # 変換対象の部分だけ抽出
crop = self.audio_buffer[-1 * (inputSize + crossfadeSize):-1 * (crossfadeSize)]
2023-03-10 19:56:10 +03:00
rms = np.sqrt(np.square(crop).mean(axis=0))
2023-03-11 03:53:10 +03:00
vol = max(rms, self.prevVol * 0.0)
2023-03-10 19:56:10 +03:00
self.prevVol = vol
c, f0, uv = self.get_unit_f0(self.audio_buffer, self.settings.tran)
2023-03-10 19:56:10 +03:00
return (c, f0, uv, convertSize, vol)
def _onnx_inference(self, data):
2023-03-18 00:30:50 +03:00
if hasattr(self, "onnx_session") == False or self.onnx_session == None:
print("[Voice Changer] No onnx session.")
return np.zeros(1).astype(np.int16)
convertSize = data[3]
vol = data[4]
data = (data[0], data[1], data[2],)
if vol < self.settings.silentThreshold:
return np.zeros(convertSize).astype(np.int16)
c, f0, uv = [x.numpy() for x in data]
audio1 = self.onnx_session.run(
["audio"],
{
"c": c,
"f0": f0,
"g": np.array([self.settings.dstId]),
"uv": np.array([self.settings.dstId]),
"predict_f0": np.array([self.settings.dstId]),
"noice_scale": np.array([self.settings.dstId]),
})[0][0, 0] * self.hps.data.max_wav_value
audio1 = audio1 * vol
result = audio1
return result
2023-03-10 19:56:10 +03:00
pass
def _pyTorch_inference(self, data):
if hasattr(self, "net_g") == False or self.net_g == None:
print("[Voice Changer] No pyTorch session.")
return np.zeros(1).astype(np.int16)
if self.settings.gpu < 0 or self.gpu_num == 0:
dev = torch.device("cpu")
else:
dev = torch.device("cuda", index=self.settings.gpu)
convertSize = data[3]
vol = data[4]
data = (data[0], data[1], data[2],)
if vol < self.settings.silentThreshold:
return np.zeros(convertSize).astype(np.int16)
2023-03-10 19:56:10 +03:00
with torch.no_grad():
c, f0, uv = [x.to(dev)for x in data]
sid_target = torch.LongTensor([self.settings.dstId]).to(dev)
2023-03-10 19:56:10 +03:00
self.net_g.to(dev)
# audio1 = self.net_g.infer(c, f0=f0, g=sid_target, uv=uv, predict_f0=True, noice_scale=0.1)[0][0, 0].data.float()
predict_f0_flag = True if self.settings.predictF0 == 1 else False
audio1 = self.net_g.infer(c, f0=f0, g=sid_target, uv=uv, predict_f0=predict_f0_flag,
noice_scale=self.settings.noiceScale)[0][0, 0].data.float()
2023-03-10 19:56:10 +03:00
audio1 = audio1 * self.hps.data.max_wav_value
2023-03-12 21:32:21 +03:00
audio1 = audio1 * vol
2023-03-10 19:56:10 +03:00
result = audio1.float().cpu().numpy()
# result = infer_tool.pad_array(result, length)
return result
def inference(self, data):
if self.settings.framework == "ONNX":
audio = self._onnx_inference(data)
else:
audio = self._pyTorch_inference(data)
return audio
def destroy(self):
del self.net_g
del self.onnx_session