voice-changer/server/voice_changer/VoiceChanger.py

285 lines
13 KiB
Python
Raw Normal View History

2022-12-31 10:08:14 +03:00
import torch
2023-01-07 18:25:21 +03:00
import math, os, traceback
2022-12-31 10:08:14 +03:00
from scipy.io.wavfile import write, read
import numpy as np
2023-01-08 10:18:20 +03:00
from dataclasses import dataclass, asdict
2022-12-31 10:08:14 +03:00
import utils
import commons
from models import SynthesizerTrn
from text.symbols import symbols
from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
from mel_processing import spectrogram_torch
from text import text_to_sequence, cleaned_text_to_sequence
2023-01-07 14:07:39 +03:00
import onnxruntime
2022-12-31 10:08:14 +03:00
2023-01-07 18:25:21 +03:00
providers = ['OpenVINOExecutionProvider',"CUDAExecutionProvider","DmlExecutionProvider","CPUExecutionProvider"]
2022-12-31 10:08:14 +03:00
2023-01-08 10:18:20 +03:00
@dataclass
class VocieChangerSettings():
gpu:int = 0
srcId:int = 107
dstId:int = 100
crossFadeOffsetRate:float = 0.1
crossFadeEndRate:float = 0.9
convertChunkNum:int = 32
framework:str = "PyTorch"
pyTorch_model_file:str = ""
onnx_model_file:str = ""
config_file:str = ""
# ↓mutableな物だけ列挙
intData = ["srcId", "dstId", "convertChunkNum"]
floatData = ["gpu", "crossFadeOffsetRate", "crossFadeEndRate",]
strData = ["framework"]
2022-12-31 10:08:14 +03:00
class VoiceChanger():
2023-01-08 10:18:20 +03:00
def __init__(self, config:str, pyTorch_model_file:str=None, onnx_model_file:str=None):
# 初期化
self.settings = VocieChangerSettings(config_file=config, pyTorch_model_file=pyTorch_model_file, onnx_model_file=onnx_model_file)
self.unpackedData_length=0
2023-01-07 18:25:21 +03:00
# 共通で使用する情報を収集
2022-12-31 10:08:14 +03:00
self.hps = utils.get_hparams_from_file(config)
self.gpu_num = torch.cuda.device_count()
text_norm = text_to_sequence("a", self.hps.data.text_cleaners)
text_norm = commons.intersperse(text_norm, 0)
self.text_norm = torch.LongTensor(text_norm)
self.audio_buffer = torch.zeros(1, 0)
self.prev_audio = np.zeros(1)
2023-01-07 18:25:21 +03:00
self.mps_enabled = getattr(torch.backends, "mps", None) is not None and torch.backends.mps.is_available()
2022-12-31 10:08:14 +03:00
2023-01-04 20:28:36 +03:00
print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num}, mps_enabled:{self.mps_enabled})")
2023-01-07 18:25:21 +03:00
# PyTorchモデル生成
2023-01-08 10:18:20 +03:00
if pyTorch_model_file != None:
2023-01-07 18:25:21 +03:00
self.net_g = SynthesizerTrn(
len(symbols),
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
n_speakers=self.hps.data.n_speakers,
**self.hps.model)
self.net_g.eval()
2023-01-08 10:18:20 +03:00
utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
2023-01-07 18:25:21 +03:00
else:
self.net_g = None
# ONNXモデル生成
2023-01-08 10:18:20 +03:00
if onnx_model_file != None:
2023-01-07 14:07:39 +03:00
ort_options = onnxruntime.SessionOptions()
ort_options.intra_op_num_threads = 8
# ort_options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL
# ort_options.execution_mode = onnxruntime.ExecutionMode.ORT_PARALLEL
# ort_options.inter_op_num_threads = 8
self.onnx_session = onnxruntime.InferenceSession(
2023-01-08 10:18:20 +03:00
onnx_model_file,
2023-01-07 18:25:21 +03:00
providers=providers
2023-01-07 14:07:39 +03:00
)
2023-01-07 18:25:21 +03:00
# print("ONNX_MDEOL!1", self.onnx_session.get_providers())
# self.onnx_session.set_providers(providers=["CPUExecutionProvider"])
# print("ONNX_MDEOL!1", self.onnx_session.get_providers())
# self.onnx_session.set_providers(providers=["DmlExecutionProvider"])
# print("ONNX_MDEOL!1", self.onnx_session.get_providers())
else:
self.onnx_session = None
2022-12-31 10:08:14 +03:00
def destroy(self):
del self.net_g
2023-01-07 14:07:39 +03:00
del self.onnx_session
2022-12-31 10:08:14 +03:00
2023-01-07 18:25:21 +03:00
def get_info(self):
2023-01-08 10:18:20 +03:00
data = asdict(self.settings)
data["providers"] = self.onnx_session.get_providers() if hasattr(self, "onnx_session") else ""
files = ["config_file", "pyTorch_model_file", "onnx_model_file"]
for f in files:
data[f] = os.path.basename(data[f])
return data
def update_setteings(self, key:str, val:any):
if key == "onnxExecutionProvider":
self.onnx_session.set_providers(providers=[val])
return self.get_info()
elif key in self.settings.intData:
setattr(self.settings, key, int(val))
return self.get_info()
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
return self.get_info()
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
return self.get_info()
2023-01-08 03:45:58 +03:00
else:
2023-01-08 10:18:20 +03:00
print(f"{key} is not mutalbe variable!")
return self.get_info()
# def set_gpu(self, gpu:int):
# self.settings.gpu = gpu
# return {"gpu":self.settings.gpu}
# def set_crossfade_setting(self, crossFadeOffsetRate:float, crossFadeEndRate:float):
# self.settings.crossFadeOffsetRate = crossFadeOffsetRate
# self.settings.crossFadeEndRate = crossFadeEndRate
# self.unpackedData_length = 0 # 次のVC時にStrengthを再計算させるため。
# def set_conversion_setting(self, srcId:int, dstId:int):
# self.settings.srcId = srcId
# self.settings.dstId = dstId
2023-01-08 03:45:58 +03:00
2023-01-08 10:18:20 +03:00
# def set_convert_chunk_num(self, convertChunkNum):
# self.settings.convertChunkNum = convertChunkNum
2023-01-04 20:28:36 +03:00
2023-01-08 10:18:20 +03:00
def _generate_strength(self, unpackedData):
2023-01-07 14:07:39 +03:00
2023-01-08 10:18:20 +03:00
if self.unpackedData_length != unpackedData.shape[0]:
2023-01-04 20:28:36 +03:00
self.unpackedData_length = unpackedData.shape[0]
2023-01-08 10:18:20 +03:00
cf_offset = int(unpackedData.shape[0] * self.settings.crossFadeOffsetRate)
cf_end = int(unpackedData.shape[0] * self.settings.crossFadeEndRate)
2023-01-04 20:28:36 +03:00
cf_range = cf_end - cf_offset
percent = np.arange(cf_range) / cf_range
np_prev_strength = np.cos(percent * 0.5 * np.pi) ** 2
np_cur_strength = np.cos((1-percent) * 0.5 * np.pi) ** 2
2023-01-07 14:07:39 +03:00
self.np_prev_strength = np.concatenate([np.ones(cf_offset), np_prev_strength, np.zeros(unpackedData.shape[0]-cf_offset-len(np_prev_strength))])
self.np_cur_strength = np.concatenate([np.zeros(cf_offset), np_cur_strength, np.ones(unpackedData.shape[0]-cf_offset-len(np_cur_strength))])
2023-01-04 20:28:36 +03:00
2023-01-07 14:07:39 +03:00
self.prev_strength = torch.FloatTensor(self.np_prev_strength)
self.cur_strength = torch.FloatTensor(self.np_cur_strength)
2023-01-04 20:28:36 +03:00
2023-01-08 10:18:20 +03:00
# torch.set_printoptions(edgeitems=2100)
2023-01-04 20:28:36 +03:00
print("Generated Strengths")
2023-01-05 16:08:26 +03:00
# print(f"cross fade: start:{cf_offset} end:{cf_end} range:{cf_range}")
# print(f"target_len:{unpackedData.shape[0]}, prev_len:{len(self.prev_strength)} cur_len:{len(self.cur_strength)}")
# print("Prev", self.prev_strength)
# print("Cur", self.cur_strength)
2023-01-04 20:28:36 +03:00
# ひとつ前の結果とサイズが変わるため、記録は消去する。
2023-01-05 15:51:06 +03:00
if hasattr(self, 'prev_audio1') == True:
delattr(self,"prev_audio1")
2023-01-04 20:28:36 +03:00
2023-01-08 10:18:20 +03:00
def _generate_input(self, unpackedData:any, convertSize:int):
2023-01-08 03:22:22 +03:00
# 今回変換するデータをテンソルとして整形する
audio = torch.FloatTensor(unpackedData.astype(np.float32)) # float32でtensorfを作成
audio_norm = audio / self.hps.data.max_wav_value # normalize
audio_norm = audio_norm.unsqueeze(0) # unsqueeze
self.audio_buffer = torch.cat([self.audio_buffer, audio_norm], axis=1) # 過去のデータに連結
audio_norm = self.audio_buffer[:, -convertSize:] # 変換対象の部分だけ抽出
self.audio_buffer = audio_norm
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
center=False)
spec = torch.squeeze(spec, 0)
2023-01-08 10:18:20 +03:00
sid = torch.LongTensor([int(self.settings.srcId)])
2023-01-08 03:22:22 +03:00
data = (self.text_norm, spec, audio_norm, sid)
data = TextAudioSpeakerCollate()([data])
return data
2023-01-04 20:28:36 +03:00
2023-01-08 10:18:20 +03:00
def on_request(self, unpackedData:any):
convertSize = self.settings.convertChunkNum * 128 # 128sample/1chunk
2023-01-08 03:22:22 +03:00
if unpackedData.shape[0] * 2 > convertSize:
convertSize = unpackedData.shape[0] * 2
2023-01-08 03:45:58 +03:00
# print("convert Size", convertChunkNum, convertSize)
2023-01-08 03:22:22 +03:00
2023-01-08 10:18:20 +03:00
self._generate_strength(unpackedData)
data = self._generate_input(unpackedData, convertSize)
# try:
# # if gpu < 0 or (self.gpu_num == 0 and not self.mps_enabled):
# if self.gpu == -2 and hasattr(self, 'onnx_session') == True:
# x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x for x in data]
# sid_tgt1 = torch.LongTensor([self.dstId])
# # if spec.size()[2] >= 8:
# audio1 = self.onnx_session.run(
# ["audio"],
# {
# "specs": spec.numpy(),
# "lengths": spec_lengths.numpy(),
# "sid_src": sid_src.numpy(),
# "sid_tgt": sid_tgt1.numpy()
# })[0][0,0] * self.hps.data.max_wav_value
# if hasattr(self, 'np_prev_audio1') == True:
# prev = self.np_prev_audio1[-1*unpackedData.shape[0]:]
# cur = audio1[-2*unpackedData.shape[0]:-1*unpackedData.shape[0]]
# # print(prev.shape, self.np_prev_strength.shape, cur.shape, self.np_cur_strength.shape)
# powered_prev = prev * self.np_prev_strength
# powered_cur = cur * self.np_cur_strength
# result = powered_prev + powered_cur
# #result = prev * self.np_prev_strength + cur * self.np_cur_strength
# else:
# cur = audio1[-2*unpackedData.shape[0]:-1*unpackedData.shape[0]]
# result = cur
# self.np_prev_audio1 = audio1
# elif self.gpu < 0 or self.gpu_num == 0:
# with torch.no_grad():
# x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [
# x.cpu() for x in data]
# sid_tgt1 = torch.LongTensor([self.dstId]).cpu()
# audio1 = (self.net_g.cpu().voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0, 0].data * self.hps.data.max_wav_value)
# if self.prev_strength.device != torch.device('cpu'):
# print(f"prev_strength move from {self.prev_strength.device} to cpu")
# self.prev_strength = self.prev_strength.cpu()
# if self.cur_strength.device != torch.device('cpu'):
# print(f"cur_strength move from {self.cur_strength.device} to cpu")
# self.cur_strength = self.cur_strength.cpu()
# if hasattr(self, 'prev_audio1') == True and self.prev_audio1.device == torch.device('cpu'):
# prev = self.prev_audio1[-1*unpackedData.shape[0]:]
# cur = audio1[-2*unpackedData.shape[0]:-1*unpackedData.shape[0]]
# result = prev * self.prev_strength + cur * self.cur_strength
# else:
# cur = audio1[-2*unpackedData.shape[0]:-1*unpackedData.shape[0]]
# result = cur
# self.prev_audio1 = audio1
# result = result.cpu().float().numpy()
# else:
# with torch.no_grad():
# x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda(self.gpu) for x in data]
# sid_tgt1 = torch.LongTensor([self.dstId]).cuda(self.gpu)
# audio1 = self.net_g.cuda(self.gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0, 0].data * self.hps.data.max_wav_value
# if self.prev_strength.device != torch.device('cuda', self.gpu):
# print(f"prev_strength move from {self.prev_strength.device} to gpu{self.gpu}")
# self.prev_strength = self.prev_strength.cuda(self.gpu)
# if self.cur_strength.device != torch.device('cuda', self.gpu):
# print(f"cur_strength move from {self.cur_strength.device} to gpu{self.gpu}")
# self.cur_strength = self.cur_strength.cuda(self.gpu)
# if hasattr(self, 'prev_audio1') == True and self.prev_audio1.device == torch.device('cuda', self.gpu):
# prev = self.prev_audio1[-1*unpackedData.shape[0]:]
# cur = audio1[-2*unpackedData.shape[0]:-1*unpackedData.shape[0]]
# result = prev * self.prev_strength + cur * self.cur_strength
# # print("merging...", prev.shape, cur.shape)
# else:
# cur = audio1[-2*unpackedData.shape[0]:-1*unpackedData.shape[0]]
# result = cur
# # print("no merging...", cur.shape)
# self.prev_audio1 = audio1
# #print(result)
# result = result.cpu().float().numpy()
2023-01-04 20:28:36 +03:00
2023-01-08 10:18:20 +03:00
# except Exception as e:
# print("VC PROCESSING!!!! EXCEPTION!!!", e)
# print(traceback.format_exc())
# del self.np_prev_audio1
# del self.prev_audio1
2023-01-04 20:28:36 +03:00
2023-01-08 10:18:20 +03:00
# result = result.astype(np.int16)
# # print("on_request result size:",result.shape)
# return result
return
2023-01-04 20:28:36 +03:00