voice-changer/server/MMVCServerSIO.py

464 lines
16 KiB
Python
Raw Normal View History

2022-12-31 10:02:53 +03:00
import sys, os, struct, argparse, logging, shutil, base64, traceback
logging.getLogger('numba').setLevel(logging.WARNING)
class UvicornSuppressFilter(logging.Filter):
def filter(self, record):
return False
logger = logging.getLogger("uvicorn.error")
logger.addFilter(UvicornSuppressFilter())
# logger.propagate = False
logger = logging.getLogger("multipart.multipart")
logger.propagate = False
from dataclasses import dataclass
from datetime import datetime
from distutils.util import strtobool
import numpy as np
from scipy.io.wavfile import write, read
sys.path.append("MMVC_Trainer")
sys.path.append("MMVC_Trainer/text")
from fastapi.routing import APIRoute
from fastapi import HTTPException, Request, Response, FastAPI, UploadFile, File, Form
from fastapi.staticfiles import StaticFiles
from fastapi.encoders import jsonable_encoder
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import socketio
from pydantic import BaseModel
from typing import Callable
from mods.Trainer_Speakers import mod_get_speakers
from mods.Trainer_Training import mod_post_pre_training, mod_post_start_training, mod_post_stop_training, mod_get_related_files, mod_get_tail_training_log
from mods.Trainer_Model import mod_get_model, mod_delete_model
from mods.Trainer_Models import mod_get_models
from mods.Trainer_MultiSpeakerSetting import mod_get_multi_speaker_setting, mod_post_multi_speaker_setting
from mods.Trainer_Speaker_Voice import mod_get_speaker_voice
from mods.Trainer_Speaker_Voices import mod_get_speaker_voices
from mods.Trainer_Speaker import mod_delete_speaker
from mods.FileUploader import upload_file, concat_file_chunks
from mods.VoiceChanger import VoiceChanger
from mods.ssl import create_self_signed_cert
from sio.MMVC_Namespace import MMVC_Namespace
from voice_changer.VoiceChangerManager import VoiceChangerManager
@dataclass
class ExApplicationInfo():
external_tensorboard_port: int
exApplitionInfo = ExApplicationInfo(external_tensorboard_port=0)
class VoiceModel(BaseModel):
gpu: int
srcId: int
dstId: int
timestamp: int
prefixChunkSize: int
buffer: str
def setupArgParser():
parser = argparse.ArgumentParser()
parser.add_argument("-t", type=str, default="MMVC",
help="Server type. MMVC|TRAIN")
parser.add_argument("-p", type=int, default=8080, help="port")
parser.add_argument("-c", type=str, help="path for the config.json")
parser.add_argument("-m", type=str, help="path for the model file")
parser.add_argument("--https", type=strtobool,
default=False, help="use https")
parser.add_argument("--httpsKey", type=str,
default="ssl.key", help="path for the key of https")
parser.add_argument("--httpsCert", type=str,
default="ssl.cert", help="path for the cert of https")
parser.add_argument("--httpsSelfSigned", type=strtobool,
default=True, help="generate self-signed certificate")
parser.add_argument("--colab", type=strtobool,
default=False, help="run on colab")
return parser
def printMessage(message, level=0):
if level == 0:
print(f"\033[17m{message}\033[0m")
elif level == 1:
print(f"\033[34m {message}\033[0m")
elif level == 2:
print(f"\033[32m {message}\033[0m")
else:
print(f"\033[47m {message}\033[0m")
global app_socketio
global app_fastapi
parser = setupArgParser()
args = parser.parse_args()
printMessage(f"Phase name:{__name__}", level=2)
thisFilename = os.path.basename(__file__)[:-3]
class ValidationErrorLoggingRoute(APIRoute):
def get_route_handler(self) -> Callable:
original_route_handler = super().get_route_handler()
async def custom_route_handler(request: Request) -> Response:
try:
return await original_route_handler(request)
except Exception as exc:
print("Exception", request.url, str(exc))
body = await request.body()
detail = {"errors": exc.errors(), "body": body.decode()}
raise HTTPException(status_code=422, detail=detail)
return custom_route_handler
if __name__ == thisFilename or args.colab == True:
printMessage(f"PHASE3:{__name__}", level=2)
TYPE = args.t
PORT = args.p
CONFIG = args.c
MODEL = args.m
if os.getenv("EX_TB_PORT"):
EX_TB_PORT = os.environ["EX_TB_PORT"]
exApplitionInfo.external_tensorboard_port = int(EX_TB_PORT)
app_fastapi = FastAPI()
app_fastapi.router.route_class = ValidationErrorLoggingRoute
app_fastapi.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
app_fastapi.mount(
"/front", StaticFiles(directory="../frontend/dist", html=True), name="static")
app_fastapi.mount(
"/trainer", StaticFiles(directory="../frontend/dist", html=True), name="static")
app_fastapi.mount(
"/recorder", StaticFiles(directory="../frontend/dist", html=True), name="static")
sio = socketio.AsyncServer(
async_mode='asgi',
cors_allowed_origins='*'
)
voiceChangerManager = VoiceChangerManager.get_instance()
namespace = MMVC_Namespace.get_instance(voiceChangerManager)
sio.register_namespace(namespace)
if CONFIG and MODEL:
voiceChangerManager.loadModel(CONFIG, MODEL)
# namespace.loadWhisperModel("base")
app_socketio = socketio.ASGIApp(
sio,
other_asgi_app=app_fastapi,
static_files={
'/assets/icons/github.svg': {
'filename': '../frontend/dist/assets/icons/github.svg',
'content_type': 'image/svg+xml'
},
'': '../frontend/dist',
'/': '../frontend/dist/index.html',
}
)
@app_fastapi.get("/api/hello")
async def index():
return {"result": "Index"}
############
# File Uploder
# ##########
UPLOAD_DIR = "upload_dir"
os.makedirs(UPLOAD_DIR, exist_ok=True)
MODEL_DIR = "MMVC_Trainer/logs"
os.makedirs(MODEL_DIR, exist_ok=True)
@app_fastapi.post("/upload_file")
async def post_upload_file(
file: UploadFile = File(...),
filename: str = Form(...)
):
return upload_file(UPLOAD_DIR, file, filename)
@app_fastapi.post("/load_model")
async def post_load_model(
modelFilename: str = Form(...),
modelFilenameChunkNum: int = Form(...),
configFilename: str = Form(...)
):
modelFilePath = concat_file_chunks(
UPLOAD_DIR, modelFilename, modelFilenameChunkNum, UPLOAD_DIR)
print(f'File saved to: {modelFilePath}')
configFilePath = os.path.join(UPLOAD_DIR, configFilename)
voiceChangerManager.loadModel(configFilePath, modelFilePath)
return {"load": f"{modelFilePath}, {configFilePath}"}
@app_fastapi.post("/load_model_for_train")
async def post_load_model_for_train(
modelGFilename: str = Form(...),
modelGFilenameChunkNum: int = Form(...),
modelDFilename: str = Form(...),
modelDFilenameChunkNum: int = Form(...),
):
modelGFilePath = concat_file_chunks(
UPLOAD_DIR, modelGFilename, modelGFilenameChunkNum, MODEL_DIR)
modelDFilePath = concat_file_chunks(
UPLOAD_DIR, modelDFilename, modelDFilenameChunkNum, MODEL_DIR)
return {"File saved": f"{modelGFilePath}, {modelDFilePath}"}
@app_fastapi.post("/extract_voices")
async def post_load_model(
zipFilename: str = Form(...),
zipFileChunkNum: int = Form(...),
):
zipFilePath = concat_file_chunks(
UPLOAD_DIR, zipFilename, zipFileChunkNum, UPLOAD_DIR)
shutil.unpack_archive(zipFilePath, "MMVC_Trainer/dataset/textful/")
return {"Zip file unpacked": f"{zipFilePath}"}
############
# Voice Changer
# ##########
@app_fastapi.post("/test")
async def post_test(voice: VoiceModel):
try:
# print("POST REQUEST PROCESSING....")
gpu = voice.gpu
srcId = voice.srcId
dstId = voice.dstId
timestamp = voice.timestamp
prefixChunkSize = voice.prefixChunkSize
buffer = voice.buffer
wav = base64.b64decode(buffer)
if wav == 0:
samplerate, data = read("dummy.wav")
unpackedData = data
else:
unpackedData = np.array(struct.unpack(
'<%sh' % (len(wav) // struct.calcsize('<h')), wav))
# write("logs/received_data.wav", 24000,
# unpackedData.astype(np.int16))
changedVoice = voiceChangerManager.changeVoice(
gpu, srcId, dstId, timestamp, prefixChunkSize, unpackedData)
changedVoiceBase64 = base64.b64encode(changedVoice).decode('utf-8')
data = {
"gpu": gpu,
"srcId": srcId,
"dstId": dstId,
"timestamp": timestamp,
"prefixChunkSize": prefixChunkSize,
"changedVoiceBase64": changedVoiceBase64
}
json_compatible_item_data = jsonable_encoder(data)
return JSONResponse(content=json_compatible_item_data)
except Exception as e:
print("REQUEST PROCESSING!!!! EXCEPTION!!!", e)
print(traceback.format_exc())
return str(e)
# Trainer REST API ※ ColabがTop直下のパスにしかPOSTを投げれないようなので"REST風"
@app_fastapi.get("/get_speakers")
async def get_speakers():
return mod_get_speakers()
@app_fastapi.delete("/delete_speaker")
async def delete_speaker(speaker: str = Form(...)):
return mod_delete_speaker(speaker)
@app_fastapi.get("/get_speaker_voices")
async def get_speaker_voices(speaker: str):
return mod_get_speaker_voices(speaker)
@app_fastapi.get("/get_speaker_voice")
async def get_speaker_voices(speaker: str, voice: str):
return mod_get_speaker_voice(speaker, voice)
@app_fastapi.get("/get_multi_speaker_setting")
async def get_multi_speaker_setting():
return mod_get_multi_speaker_setting()
@app_fastapi.post("/post_multi_speaker_setting")
async def post_multi_speaker_setting(setting: str = Form(...)):
return mod_post_multi_speaker_setting(setting)
@app_fastapi.get("/get_models")
async def get_models():
return mod_get_models()
@app_fastapi.get("/get_model")
async def get_model(model: str):
return mod_get_model(model)
@app_fastapi.delete("/delete_model")
async def delete_model(model: str = Form(...)):
return mod_delete_model(model)
@app_fastapi.post("/post_pre_training")
async def post_pre_training(batch: int = Form(...)):
return mod_post_pre_training(batch)
@app_fastapi.post("/post_start_training")
async def post_start_training(enable_finetuning: bool = Form(...),GModel: str = Form(...),DModel: str = Form(...)):
print("POST START TRAINING..")
return mod_post_start_training(enable_finetuning, GModel, DModel)
@app_fastapi.post("/post_stop_training")
async def post_stop_training():
print("POST STOP TRAINING..")
return mod_post_stop_training()
@app_fastapi.get("/get_related_files")
async def get_related_files():
return mod_get_related_files()
@app_fastapi.get("/get_tail_training_log")
async def get_tail_training_log(num: int):
return mod_get_tail_training_log(num)
@app_fastapi.get("/get_ex_application_info")
async def get_ex_application_info():
json_compatible_item_data = jsonable_encoder(exApplitionInfo)
return JSONResponse(content=json_compatible_item_data)
if __name__ == '__mp_main__':
printMessage(f"PHASE2adasdfadfasd:{__name__}", level=2)
if __name__ == '__main__':
printMessage(f"PHASE1:{__name__}", level=2)
TYPE = args.t
PORT = args.p
CONFIG = args.c
MODEL = args.m
if TYPE != "MMVC" and TYPE != "TRAIN":
print("Type(-t) should be MMVC or TRAIN")
exit(1)
printMessage(f"Start MMVC SocketIO Server", level=0)
printMessage(f"CONFIG:{CONFIG}, MODEL:{MODEL}", level=1)
if args.colab == False:
if os.getenv("EX_PORT"):
EX_PORT = os.environ["EX_PORT"]
printMessage(
f"External_Port:{EX_PORT} Internal_Port:{PORT}", level=1)
else:
printMessage(f"Internal_Port:{PORT}", level=1)
if os.getenv("EX_TB_PORT"):
EX_TB_PORT = os.environ["EX_TB_PORT"]
printMessage(f"External_TeonsorBord_Port:{EX_TB_PORT}", level=1)
if os.getenv("EX_IP"):
EX_IP = os.environ["EX_IP"]
printMessage(f"External_IP:{EX_IP}", level=1)
# HTTPS key/cert作成
if args.https and args.httpsSelfSigned == 1:
# HTTPS(おれおれ証明書生成)
os.makedirs("./key", exist_ok=True)
key_base_name = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}"
keyname = f"{key_base_name}.key"
certname = f"{key_base_name}.cert"
create_self_signed_cert(certname, keyname, certargs={"Country": "JP",
"State": "Tokyo",
"City": "Chuo-ku",
"Organization": "F",
"Org. Unit": "F"}, cert_dir="./key")
key_path = os.path.join("./key", keyname)
cert_path = os.path.join("./key", certname)
printMessage(
f"protocol: HTTPS(self-signed), key:{key_path}, cert:{cert_path}", level=1)
elif args.https and args.httpsSelfSigned == 0:
# HTTPS
key_path = args.httpsKey
cert_path = args.httpsCert
printMessage(
f"protocol: HTTPS, key:{key_path}, cert:{cert_path}", level=1)
else:
# HTTP
printMessage(f"protocol: HTTP", level=1)
# アドレス表示
if args.https == 1:
printMessage(
f"open https://<IP>:<PORT>/ with your browser.", level=0)
else:
printMessage(
f"open http://<IP>:<PORT>/ with your browser.", level=0)
if TYPE == "MMVC":
path = ""
else:
path = "trainer"
if "EX_PORT" in locals() and "EX_IP" in locals() and args.https == 1:
printMessage(f"In many cases it is one of the following", level=1)
printMessage(f"https://localhost:{EX_PORT}/{path}", level=1)
for ip in EX_IP.strip().split(" "):
printMessage(f"https://{ip}:{EX_PORT}/{path}", level=1)
elif "EX_PORT" in locals() and "EX_IP" in locals() and args.https == 0:
printMessage(f"In many cases it is one of the following", level=1)
printMessage(f"http://localhost:{EX_PORT}/{path}", level=1)
# サーバ起動
if args.https:
# HTTPS サーバ起動
uvicorn.run(
f"{os.path.basename(__file__)[:-3]}:app_socketio",
host="0.0.0.0",
port=int(PORT),
reload=True,
ssl_keyfile=key_path,
ssl_certfile=cert_path,
log_level="critical"
)
else:
# HTTP サーバ起動
if args.colab == True:
uvicorn.run(
f"{os.path.basename(__file__)[:-3]}:app_fastapi",
host="0.0.0.0",
port=int(PORT),
log_level="critical"
)
else:
uvicorn.run(
f"{os.path.basename(__file__)[:-3]}:app_socketio",
host="0.0.0.0",
port=int(PORT),
reload=True,
log_level="critical"
)