voice-changer/server/voice_changer/DiffusionSVC/pitchExtractor/RMVPEPitchExtractor.py

65 lines
2.3 KiB
Python
Raw Normal View History

2023-07-15 03:17:19 +03:00
import torch
import numpy as np
from const import PitchExtractorType
from voice_changer.DiffusionSVC.pitchExtractor.PitchExtractor import PitchExtractor
from voice_changer.DiffusionSVC.pitchExtractor.rmvpe.rmvpe import RMVPE
2023-07-15 03:34:29 +03:00
from scipy.ndimage import zoom
2023-07-15 03:17:19 +03:00
class RMVPEPitchExtractor(PitchExtractor):
def __init__(self, file: str, gpu: int):
super().__init__()
self.pitchExtractorType: PitchExtractorType = "rmvpe"
self.f0_min = 50
self.f0_max = 1100
self.sapmle_rate = 16000
self.uv_interp = True
if torch.cuda.is_available() and gpu >= 0:
self.device = torch.device("cuda:" + str(torch.cuda.current_device()))
else:
self.device = torch.device("cpu")
self.rmvpe = RMVPE(model_path=file, is_half=False, device=self.device)
def extract(self, audio: torch.Tensor, pitch, f0_up_key, window, silence_front=0):
start_frame = int(silence_front * self.sapmle_rate / window)
real_silence_front = start_frame * window / self.sapmle_rate
2023-07-15 03:34:29 +03:00
2023-07-15 03:17:19 +03:00
audio = audio[int(np.round(real_silence_front * self.sapmle_rate)):]
2023-07-15 03:34:29 +03:00
silented_frames = int(audio.size(0) // window) + 1
2023-07-15 03:17:19 +03:00
f0 = self.rmvpe.infer_from_audio_t(audio, thred=0.03)
# f0, pd = torchcrepe.predict(
# audio.unsqueeze(0),
# self.sapmle_rate,
# hop_length=window,
# fmin=self.f0_min,
# fmax=self.f0_max,
# # model="tiny",
# model="full",
# batch_size=256,
# decoder=torchcrepe.decode.weighted_argmax,
# device=self.device,
# return_periodicity=True,
# )
# f0 = torchcrepe.filter.median(f0, 3) # 本家だとmeanですが、harvestに合わせmedianフィルタ
# pd = torchcrepe.filter.median(pd, 3)
# f0[pd < 0.1] = 0
# f0 = f0.squeeze()
2023-07-15 03:34:29 +03:00
resize_factor = silented_frames / len(f0)
f0 = zoom(f0, resize_factor, order=0)
2023-07-15 03:17:19 +03:00
pitch[-f0.shape[0]:] = f0[:pitch.shape[0]]
f0 = pitch
if self.uv_interp:
uv = f0 == 0
if len(f0[~uv]) > 0:
f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv])
f0[f0 < self.f0_min] = self.f0_min
f0 = f0 * 2 ** (float(f0_up_key) / 12)
return f0