voice-changer/server/voice_changer/MMVCv13/MMVCv13.py

290 lines
10 KiB
Python
Raw Normal View History

import sys
import os
2023-06-20 00:39:39 +03:00
from data.ModelSlot import MMVCv13ModelSlot
2023-04-28 07:49:40 +03:00
2023-06-20 00:39:39 +03:00
from voice_changer.utils.LoadModelParams import LoadModelParams, LoadModelParams2
2023-04-28 07:49:40 +03:00
from voice_changer.utils.VoiceChangerModel import AudioInOut
if sys.platform.startswith("darwin"):
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
if len(baseDir) != 1:
print("baseDir should be only one ", baseDir)
sys.exit()
modulePath = os.path.join(baseDir[0], "MMVC_Client_v13", "python")
sys.path.append(modulePath)
else:
2023-04-11 01:37:39 +03:00
modulePath = os.path.join("MMVC_Client_v13", "python")
sys.path.append(modulePath)
2023-04-10 18:21:17 +03:00
2023-04-28 07:49:40 +03:00
from dataclasses import dataclass, asdict, field
import numpy as np
import torch
import onnxruntime
2023-04-28 07:49:40 +03:00
from symbols import symbols # type:ignore
from models import SynthesizerTrn # type:ignore
from voice_changer.MMVCv13.TrainerFunctions import (
TextAudioSpeakerCollate,
spectrogram_torch,
load_checkpoint,
get_hparams_from_file,
)
2023-04-17 03:45:12 +03:00
from Exceptions import NoModeLoadedException
@dataclass
2023-04-28 07:49:40 +03:00
class MMVCv13Settings:
gpu: int = 0
srcId: int = 0
dstId: int = 101
framework: str = "PyTorch" # PyTorch or ONNX
pyTorchModelFile: str = ""
onnxModelFile: str = ""
configFile: str = ""
# ↓mutableな物だけ列挙
intData = ["gpu", "srcId", "dstId"]
2023-04-28 07:49:40 +03:00
floatData: list[str] = field(default_factory=lambda: [])
2023-03-07 19:40:03 +03:00
strData = ["framework"]
2023-03-07 19:40:03 +03:00
class MMVCv13:
2023-04-28 07:49:40 +03:00
audio_buffer: AudioInOut | None = None
def __init__(self):
2023-03-07 19:40:03 +03:00
self.settings = MMVCv13Settings()
self.net_g = None
self.onnx_session = None
self.gpu_num = torch.cuda.device_count()
2023-03-07 19:40:03 +03:00
self.text_norm = torch.LongTensor([0, 6, 0])
2023-04-28 07:49:40 +03:00
def loadModel(self, props: LoadModelParams):
2023-05-08 12:02:15 +03:00
params = props.params
self.settings.configFile = params["files"]["mmvcv13Config"]
2023-04-16 05:08:03 +03:00
self.hps = get_hparams_from_file(self.settings.configFile)
modelFile = params["files"]["mmvcv13Model"]
2023-05-08 12:02:15 +03:00
if modelFile.endswith(".onnx"):
self.settings.pyTorchModelFile = None
self.settings.onnxModelFile = modelFile
else:
self.settings.pyTorchModelFile = modelFile
self.settings.onnxModelFile = None
# PyTorchモデル生成
2023-04-28 07:49:40 +03:00
if self.settings.pyTorchModelFile is not None:
2023-06-20 00:39:39 +03:00
self.net_g = SynthesizerTrn(len(symbols), self.hps.data.filter_length // 2 + 1, self.hps.train.segment_size // self.hps.data.hop_length, n_speakers=self.hps.data.n_speakers, **self.hps.model)
self.net_g.eval()
2023-04-16 05:08:03 +03:00
load_checkpoint(self.settings.pyTorchModelFile, self.net_g, None)
# ONNXモデル生成
2023-04-28 07:49:40 +03:00
if self.settings.onnxModelFile is not None:
2023-05-08 12:02:15 +03:00
# ort_options = onnxruntime.SessionOptions()
# ort_options.intra_op_num_threads = 8
# ort_options.execution_mode = ort_options.ExecutionMode.ORT_PARALLEL
# ort_options.inter_op_num_threads = 8
providers, options = self.getOnnxExecutionProvider()
self.onnx_session = onnxruntime.InferenceSession(
2023-05-08 12:02:15 +03:00
self.settings.onnxModelFile,
providers=providers,
provider_options=options,
)
return self.get_info()
2023-05-08 12:02:15 +03:00
def getOnnxExecutionProvider(self):
2023-05-29 11:34:35 +03:00
availableProviders = onnxruntime.get_available_providers()
if self.settings.gpu >= 0 and "CUDAExecutionProvider" in availableProviders:
2023-05-08 12:02:15 +03:00
return ["CUDAExecutionProvider"], [{"device_id": self.settings.gpu}]
2023-05-29 11:34:35 +03:00
elif self.settings.gpu >= 0 and "DmlExecutionProvider" in availableProviders:
return ["DmlExecutionProvider"], [{}]
2023-05-08 12:02:15 +03:00
else:
return ["CPUExecutionProvider"], [
{
"intra_op_num_threads": 8,
"execution_mode": onnxruntime.ExecutionMode.ORT_PARALLEL,
"inter_op_num_threads": 8,
}
]
def isOnnx(self):
if self.settings.onnxModelFile is not None:
return True
else:
return False
2023-04-28 07:49:40 +03:00
def update_settings(self, key: str, val: int | float | str):
2023-05-08 12:02:15 +03:00
if key in self.settings.intData:
2023-04-28 07:49:40 +03:00
val = int(val)
setattr(self.settings, key, val)
2023-05-08 12:02:15 +03:00
if key == "gpu" and self.isOnnx():
providers, options = self.getOnnxExecutionProvider()
self.onnx_session = onnxruntime.InferenceSession(
self.settings.onnxModelFile,
providers=providers,
provider_options=options,
)
# providers = self.onnx_session.get_providers()
# print("Providers:", providers)
# if "CUDAExecutionProvider" in providers:
# provider_options = [{"device_id": self.settings.gpu}]
# self.onnx_session.set_providers(
# providers=["CUDAExecutionProvider"],
# provider_options=provider_options,
# )
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
else:
return False
return True
def get_info(self):
data = asdict(self.settings)
2023-06-20 00:39:39 +03:00
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session is not None else []
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
for f in files:
2023-04-28 07:49:40 +03:00
if data[f] is not None and os.path.exists(data[f]):
data[f] = os.path.basename(data[f])
else:
data[f] = ""
return data
def get_processing_sampling_rate(self):
2023-04-28 07:49:40 +03:00
if hasattr(self, "hps") is False:
2023-04-17 03:45:12 +03:00
raise NoModeLoadedException("config")
return self.hps.data.sampling_rate
2023-04-28 07:49:40 +03:00
def _get_spec(self, audio: AudioInOut):
spec = spectrogram_torch(
audio,
self.hps.data.filter_length,
self.hps.data.sampling_rate,
self.hps.data.hop_length,
self.hps.data.win_length,
center=False,
)
spec = torch.squeeze(spec, 0)
return spec
2023-04-28 07:49:40 +03:00
def generate_input(
self,
newData: AudioInOut,
inputSize: int,
crossfadeSize: int,
solaSearchFrame: int = 0,
):
2023-04-14 22:25:30 +03:00
newData = newData.astype(np.float32) / self.hps.data.max_wav_value
2023-04-28 07:49:40 +03:00
if self.audio_buffer is not None:
2023-06-20 00:39:39 +03:00
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
2023-04-14 22:25:30 +03:00
else:
self.audio_buffer = newData
2023-04-14 22:58:56 +03:00
convertSize = inputSize + crossfadeSize + solaSearchFrame
2023-05-26 17:04:56 +03:00
# if convertSize < 8192:
# convertSize = 8192
if convertSize % self.hps.data.hop_length != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
2023-06-20 00:39:39 +03:00
convertSize = convertSize + (self.hps.data.hop_length - (convertSize % self.hps.data.hop_length))
2023-04-28 07:49:40 +03:00
convertOffset = -1 * convertSize
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
2023-03-07 19:40:03 +03:00
audio = torch.FloatTensor(self.audio_buffer)
audio_norm = audio.unsqueeze(0) # unsqueeze
2023-03-07 19:40:03 +03:00
spec = self._get_spec(audio_norm)
sid = torch.LongTensor([int(self.settings.srcId)])
2023-03-07 19:40:03 +03:00
data = (self.text_norm, spec, audio_norm, sid)
data = TextAudioSpeakerCollate()([data])
return data
def _onnx_inference(self, data):
2023-04-28 07:49:40 +03:00
if hasattr(self, "onnx_session") is False or self.onnx_session is None:
print("[Voice Changer] No ONNX session.")
2023-04-17 03:45:12 +03:00
raise NoModeLoadedException("ONNX")
2023-03-07 19:40:03 +03:00
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x for x in data]
sid_tgt1 = torch.LongTensor([self.settings.dstId])
2023-03-07 19:40:03 +03:00
# if spec.size()[2] >= 8:
2023-04-28 07:49:40 +03:00
audio1 = (
self.onnx_session.run(
["audio"],
{
"specs": spec.numpy(),
"lengths": spec_lengths.numpy(),
"sid_src": sid_src.numpy(),
"sid_tgt": sid_tgt1.numpy(),
},
2023-06-20 00:39:39 +03:00
)[
0
][0, 0]
2023-04-28 07:49:40 +03:00
* self.hps.data.max_wav_value
)
return audio1
def _pyTorch_inference(self, data):
2023-04-28 07:49:40 +03:00
if hasattr(self, "net_g") is False or self.net_g is None:
print("[Voice Changer] No pyTorch session.")
2023-04-17 03:45:12 +03:00
raise NoModeLoadedException("pytorch")
if self.settings.gpu < 0 or self.gpu_num == 0:
dev = torch.device("cpu")
else:
dev = torch.device("cuda", index=self.settings.gpu)
with torch.no_grad():
2023-06-20 00:39:39 +03:00
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.to(dev) for x in data]
sid_target = torch.LongTensor([self.settings.dstId]).to(dev)
2023-06-20 00:39:39 +03:00
audio1 = self.net_g.to(dev).voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_target)[0, 0].data * self.hps.data.max_wav_value
result = audio1.float().cpu().numpy()
2023-03-07 19:40:03 +03:00
return result
def inference(self, data):
2023-05-08 12:02:15 +03:00
if self.isOnnx():
audio = self._onnx_inference(data)
else:
audio = self._pyTorch_inference(data)
return audio
2023-06-20 00:39:39 +03:00
@classmethod
def loadModel2(cls, props: LoadModelParams2):
slotInfo: MMVCv13ModelSlot = MMVCv13ModelSlot()
for file in props.files:
if file.kind == "mmvcv13Model":
slotInfo.modelFile = file.name
elif file.kind == "mmvcv13Config":
slotInfo.configFile = file.name
slotInfo.isONNX = slotInfo.modelFile.endswith(".onnx")
slotInfo.name = os.path.splitext(os.path.basename(slotInfo.modelFile))[0]
return slotInfo
2023-04-10 18:21:17 +03:00
def __del__(self):
del self.net_g
del self.onnx_session
2023-04-10 18:21:17 +03:00
remove_path = os.path.join("MMVC_Client_v13", "python")
2023-04-28 07:49:40 +03:00
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
2023-04-10 18:21:17 +03:00
for key in list(sys.modules):
val = sys.modules.get(key)
try:
file_path = val.__file__
2023-04-11 01:37:39 +03:00
if file_path.find(remove_path + os.path.sep) >= 0:
2023-05-30 20:26:16 +03:00
# print("remove", key, file_path)
2023-04-10 18:21:17 +03:00
sys.modules.pop(key)
2023-04-28 07:49:40 +03:00
except: # type:ignore
2023-04-10 18:21:17 +03:00
pass