Colaboratory を使用して作成しました

This commit is contained in:
w-okada 2022-09-19 07:31:05 +09:00
parent 4d9220659e
commit 0f413f9e5f

View File

@ -11,27 +11,101 @@
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "5m_Xf_2NY6mI"
},
"outputs": [],
"cell_type": "markdown",
"source": [
"import torch, torchaudio\n",
"import IPython.display as display"
]
"Voice Changer (soft-vc)\n",
"---\n",
"\n",
"This note is a demo version of Voice Changer for soft-vc. This demo is customized so as to run on Colab.\n",
"\n",
"The full version is an application that runs on Docker on a local PC.\n",
"\n",
"In general, the official version can convert audio smoothly with less time lag.\n",
"\n",
"Detailed usage instructions can be found in [this repository](https://github.com/w-okada/voice-changer)."
],
"metadata": {
"id": "1ZGMhH_TqK-g"
}
},
{
"cell_type": "markdown",
"source": [
"# Check GPU\n",
"GPU is required for soft-vc. Confirm GPU is assigned. "
],
"metadata": {
"id": "s4nKpd5ArRky"
}
},
{
"cell_type": "code",
"execution_count": 2,
"source": [
"# (1) Confirm GPU \n",
"!nvidia-smi"
],
"metadata": {
"id": "GGiC0rT2hoik",
"id": "cGXhQNzhrQxO",
"outputId": "19f8cd58-28ff-4e02-86fa-8a2484dabf6a",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "956d1935-0afd-404b-c64d-e10a0af67565"
}
},
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Sun Sep 18 22:18:45 2022 \n",
"+-----------------------------------------------------------------------------+\n",
"| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |\n",
"|-------------------------------+----------------------+----------------------+\n",
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
"| | | MIG M. |\n",
"|===============================+======================+======================|\n",
"| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n",
"| N/A 35C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |\n",
"| | | N/A |\n",
"+-------------------------------+----------------------+----------------------+\n",
" \n",
"+-----------------------------------------------------------------------------+\n",
"| Processes: |\n",
"| GPU GI CI PID Type Process name GPU Memory |\n",
"| ID ID Usage |\n",
"|=============================================================================|\n",
"| No running processes found |\n",
"+-----------------------------------------------------------------------------+\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"# Install and import modules \n",
"Install required modules.\n"
],
"metadata": {
"id": "RN5bYStxr5eI"
}
},
{
"cell_type": "code",
"source": [
"# (2-1) Install Modules\n",
"!pip install fastapi\n",
"!pip install uvicorn\n"
],
"metadata": {
"id": "od54JTHBrysO",
"outputId": "267858d4-94f2-4606-e10c-d2b872248337",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"execution_count": 3,
"outputs": [
{
"output_type": "stream",
@ -40,84 +114,102 @@
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
"Collecting fastapi\n",
" Downloading fastapi-0.85.0-py3-none-any.whl (55 kB)\n",
"\u001b[K |████████████████████████████████| 55 kB 3.6 MB/s \n",
"\u001b[K |████████████████████████████████| 55 kB 3.0 MB/s \n",
"\u001b[?25hRequirement already satisfied: pydantic!=1.7,!=1.7.1,!=1.7.2,!=1.7.3,!=1.8,!=1.8.1,<2.0.0,>=1.6.2 in /usr/local/lib/python3.7/dist-packages (from fastapi) (1.9.2)\n",
"Collecting starlette==0.20.4\n",
" Downloading starlette-0.20.4-py3-none-any.whl (63 kB)\n",
"\u001b[K |████████████████████████████████| 63 kB 2.8 MB/s \n",
"\u001b[K |████████████████████████████████| 63 kB 2.5 MB/s \n",
"\u001b[?25hRequirement already satisfied: typing-extensions>=3.10.0 in /usr/local/lib/python3.7/dist-packages (from starlette==0.20.4->fastapi) (4.1.1)\n",
"Collecting anyio<5,>=3.4.0\n",
" Downloading anyio-3.6.1-py3-none-any.whl (80 kB)\n",
"\u001b[K |████████████████████████████████| 80 kB 10.3 MB/s \n",
"\u001b[?25hCollecting sniffio>=1.1\n",
"\u001b[K |████████████████████████████████| 80 kB 10.8 MB/s \n",
"\u001b[?25hRequirement already satisfied: idna>=2.8 in /usr/local/lib/python3.7/dist-packages (from anyio<5,>=3.4.0->starlette==0.20.4->fastapi) (2.10)\n",
"Collecting sniffio>=1.1\n",
" Downloading sniffio-1.3.0-py3-none-any.whl (10 kB)\n",
"Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.7/dist-packages (from anyio<5,>=3.4.0->starlette==0.20.4->fastapi) (2.10)\n",
"Installing collected packages: sniffio, anyio, starlette, fastapi\n",
"Successfully installed anyio-3.6.1 fastapi-0.85.0 sniffio-1.3.0 starlette-0.20.4\n",
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
"Collecting uvicorn\n",
" Downloading uvicorn-0.18.3-py3-none-any.whl (57 kB)\n",
"\u001b[K |████████████████████████████████| 57 kB 5.0 MB/s \n",
"\u001b[K |████████████████████████████████| 57 kB 3.8 MB/s \n",
"\u001b[?25hCollecting h11>=0.8\n",
" Downloading h11-0.13.0-py3-none-any.whl (58 kB)\n",
"\u001b[K |████████████████████████████████| 58 kB 7.0 MB/s \n",
"\u001b[?25hRequirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from uvicorn) (4.1.1)\n",
"Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.7/dist-packages (from uvicorn) (7.1.2)\n",
"\u001b[K |████████████████████████████████| 58 kB 6.3 MB/s \n",
"\u001b[?25hRequirement already satisfied: click>=7.0 in /usr/local/lib/python3.7/dist-packages (from uvicorn) (7.1.2)\n",
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from uvicorn) (4.1.1)\n",
"Installing collected packages: h11, uvicorn\n",
"Successfully installed h11-0.13.0 uvicorn-0.18.3\n"
]
}
],
"source": [
"!pip install fastapi\n",
"!pip install uvicorn"
]
},
{
"cell_type": "code",
"execution_count": 3,
"source": [
"# (2-2) Import Modules\n",
"import torch"
],
"metadata": {
"id": "eCb2j68vsqxB"
},
"execution_count": 5,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Load models\n",
"soft-vc needs 3 models."
],
"metadata": {
"id": "wtPl3S3Xsfmp"
}
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "WO8XzrFMZGoj",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 324,
"referenced_widgets": [
"d1c9c8fc7db14c05ab0b749c06d28757",
"f6791dc0da564f81b3176ec1f8033a0c",
"5ea49bc3274b4fb3a00fae03c22bf28c",
"66c0b6c9b8b24bcf8bcfce6cc9d66d16",
"741f6105a3244cc39d07c87b61a6db70",
"3fde19555e6a44dc94584bb5e3e45230",
"f6a1ecd1738841fc829e341e2ca8b8e2",
"c2b0e85192e14f81b24bc60c2927367f",
"d387b634dac34baeb70ad7ec290960f4",
"5786621a68b94255ab505105a4f567e4",
"69c64360c23d4af9a18f7d197c792c0d",
"86662c7f8cf24bd2ab30a25e9376810a",
"ef214cd0a5ed4fc98a0252fe7626a784",
"24ee783ae0c545bca6669d76b9edc659",
"cdfc92c62f5a48628630516c50beb1e4",
"338b0dea05dd40df9df80aa9e03f6d2d",
"d5304913d0c34891804dadc55619df14",
"630430c86ad54fbdbca9ea979f6ee5af",
"afb96e0bbf2944948734ebc7536bc5b4",
"8523ea8056334830b8029b40f680c919",
"bd733abfa27d49e79205a8c8b83a7d56",
"bdc3ec183e854783bd5872dfbab2b1d1",
"60c0c9c8c8d7408e8225218063184b30",
"8993b4dc621a4d9d86f34816c35ba586",
"31a006a5b20749428459f18d20c244c4",
"350d51f1af7d41018fe8e7a95d51e5d6",
"82aa6f8faed74f1baa2e5673ce78a7e0",
"5c5ba05e0cca4810991903b7f37af96b",
"65a95487f3594da2924ed12340032eaf",
"21dd227254924fcc8d75d9187a393f11",
"1cf612f6c11847d89721cab4b6d88223",
"7e031f847c4d4c9f80dd80d8041f16e8",
"a2d3c4edf54d41a5b65f28d967b1be77"
"fad16a0235aa4e5bb2b8de5fcb183243",
"bc5c75fcb2e44548ab5aa978eeb9b8a6",
"62c8e5c4546c4c17ad4125ddb0907d63",
"52fed3e4db2747c2b70828a73073e909",
"0fc41e46c8fa4853b88a2af2345be149",
"ea2165bce13c4823bf8d9d77d4b63f49",
"8b51c58c91d3418c8d6dc619af78dafa",
"2f511db422d5487fab18d16a8b61b585",
"4c8d6b8d405e4ecf841ff782fd7a34cb",
"96954daa268a471cabedd434935aac23",
"de6bcd48cc164bcd99825a250b70cb53",
"0239844e12e64b9981e9e78dcf57d0ef",
"2bf83e0402c2485b998b35ef783b3548",
"f83daf5b13204f0a9b9dc1ee0271e6b0",
"6d46c9a7d2714add9164ba6487739b57",
"a7cf75ed1bd94a238253fa071d5b3150",
"a50e5de44a474d6c863258fbd14d0401",
"c82e786218ed47ab80ae5173b690fffe",
"28f5c855824b4a0eb899b196a2356b45",
"7956a1d6392b4b6fab81e098e54dfefc",
"19a1448c941249eb81d0d9bcdb3c6739",
"6f41807bbd764265879de3b83d247ad4",
"1b89d116460746cb90858d77ff65cffa",
"6d7b8dd5f7cc41329cfc590141f3927a",
"878fc80433d84cb98b607629c8fecf08",
"cc841ac2ac954db78989389970890582",
"bb701d96133442c6b3aa70ddc585d01c",
"e38d4376820c40de97d97c78b119cd4f",
"59323fae26814e03bad57866d75b76f1",
"b5b11bfc014c4a76a421012fb096e8e5",
"5da63d520023436aa71101b5561a5744",
"3040cd18ddae4853801274c3f10d17b0",
"e533525617774461991000eb56899c0b"
]
},
"outputId": "9f2ca3b9-817f-408d-8ee9-d5cc7793977d"
"outputId": "acd54070-6987-466f-d3ae-11f1ae22fbad"
},
"outputs": [
{
@ -139,7 +231,7 @@
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "d1c9c8fc7db14c05ab0b749c06d28757"
"model_id": "fad16a0235aa4e5bb2b8de5fcb183243"
}
},
"metadata": {}
@ -163,7 +255,7 @@
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "86662c7f8cf24bd2ab30a25e9376810a"
"model_id": "0239844e12e64b9981e9e78dcf57d0ef"
}
},
"metadata": {}
@ -185,7 +277,7 @@
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "60c0c9c8c8d7408e8225218063184b30"
"model_id": "1b89d116460746cb90858d77ff65cffa"
}
},
"metadata": {}
@ -199,20 +291,30 @@
}
],
"source": [
"# (3) Load modules\n",
"hubert = torch.hub.load(\"bshall/hubert:main\", \"hubert_soft\").cuda()\n",
"acoustic = torch.hub.load(\"bshall/acoustic-model:main\", \"hubert_soft\").cuda()\n",
"hifigan = torch.hub.load(\"bshall/hifigan:main\", \"hifigan_hubert_soft\").cuda()"
]
},
{
"cell_type": "markdown",
"source": [
"# Clone repository and configure\n"
],
"metadata": {
"id": "N0_ELMyls0Yl"
}
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "lzo_ZWmAjaby",
"outputId": "f6e1b4f7-09f2-48fa-d368-d4ff51b7c5a2"
"outputId": "425649e6-8c52-4142-869f-079d99bf958c"
},
"outputs": [
{
@ -220,28 +322,28 @@
"name": "stdout",
"text": [
"Cloning into 'voice-changer'...\n",
"remote: Enumerating objects: 100, done.\u001b[K\n",
"remote: Counting objects: 100% (100/100), done.\u001b[K\n",
"remote: Enumerating objects: 101, done.\u001b[K\n",
"remote: Counting objects: 100% (101/101), done.\u001b[K\n",
"remote: Compressing objects: 100% (87/87), done.\u001b[K\n",
"remote: Total 100 (delta 11), reused 69 (delta 5), pack-reused 0\u001b[K\n",
"Receiving objects: 100% (100/100), 18.97 MiB | 9.04 MiB/s, done.\n",
"Resolving deltas: 100% (11/11), done.\n",
"remote: Total 101 (delta 12), reused 70 (delta 6), pack-reused 0\u001b[K\n",
"Receiving objects: 100% (101/101), 18.97 MiB | 21.06 MiB/s, done.\n",
"Resolving deltas: 100% (12/12), done.\n",
"/content/voice-changer/demo\n"
]
}
],
"source": [
"# (3) リポジトリのクローン\n",
"# (4-1) Clone Repository\n",
"!git clone --depth 1 https://github.com/w-okada/voice-changer.git\n",
"%cd voice-changer/demo/"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 8,
"metadata": {
"id": "8-z9j4e_j-Wb",
"outputId": "b4b1940a-debb-4cee-de06-6df269b637d7",
"outputId": "a4855bb5-15d6-44f6-9201-8a78ea2f2309",
"colab": {
"base_uri": "https://localhost:8080/"
}
@ -293,20 +395,34 @@
}
],
"source": [
"# (4-1) 設定ファイルの配置\n",
"# (4-2) settle the config file\n",
"!cp ../template/setting_softvc_colab.json ../frontend/dist/assets/setting.json\n",
"!cat ../frontend/dist/assets/setting.json\n"
]
},
{
"cell_type": "markdown",
"source": [
"# Invoke server\n",
"\n",
"Invoke server with below (5-1)cell. And wait for ready with the command in (5-2)cell.\n",
"\n",
"Please wait for a while, then you can see the messsage.\n",
"`Application startup complete.`."
],
"metadata": {
"id": "hZAE_4gYtGOz"
}
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 9,
"metadata": {
"id": "-iPiSzvAepCl"
},
"outputs": [],
"source": [
"# (6-1) サーバの起動\n",
"# (5-1) Invoke server\n",
"PORT=8092\n",
"get_ipython().system_raw(f'python3 SoftVcServerFastAPI.py {PORT} colab >foo 2>&1 &')"
]
@ -319,7 +435,7 @@
"base_uri": "https://localhost:8080/"
},
"id": "IiWSwDjQidc7",
"outputId": "2cab411c-f19c-45d6-9777-ca707f35da48"
"outputId": "aab57f3f-45b5-4d67-ea9c-d522178c0560"
},
"outputs": [
{
@ -331,7 +447,7 @@
"Using cache found in /root/.cache/torch/hub/bshall_hifigan_main\n",
"INFO: Will watch for changes in these directories: ['/content/voice-changer/demo']\n",
"INFO: Uvicorn running on http://0.0.0.0:8092 (Press CTRL+C to quit)\n",
"INFO: Started reloader process [199] using StatReload\n",
"INFO: Started reloader process [281] using StatReload\n",
"ENV: colab\n",
"Removing weight norm...\n",
"Using cache found in /root/.cache/torch/hub/bshall_hubert_main\n",
@ -340,17 +456,31 @@
"Using cache found in /root/.cache/torch/hub/bshall_hubert_main\n",
"Using cache found in /root/.cache/torch/hub/bshall_acoustic-model_main\n",
"Using cache found in /root/.cache/torch/hub/bshall_hifigan_main\n",
"INFO: Started server process [208]\n",
"INFO: Started server process [290]\n",
"INFO: Waiting for application startup.\n",
"INFO: Application startup complete.\n"
]
}
],
"source": [
"# (6-2) サーバの起動確認 (Ctrl+Retで実行)\n",
"# (5-2) Check server status (Run with Ctrl+Ret)\n",
"!cat foo"
]
},
{
"cell_type": "markdown",
"source": [
"# Invoke Proxy\n",
"Starts a proxy to access the web server.\n",
"\n",
"Click on the URL displayed to open it and the application will open in a separate tab.\n",
"\n",
"Since it is a Colab, it will take some time to load (about 30 seconds)."
],
"metadata": {
"id": "bHATIjjNuFFy"
}
},
{
"cell_type": "code",
"source": [
@ -360,7 +490,7 @@
],
"metadata": {
"id": "H8EpnHqDjknR",
"outputId": "4102a1bd-e552-4114-c5cc-be7f08e9ef61",
"outputId": "5a6611f0-fd18-4139-cbd9-85fc58401293",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
@ -372,7 +502,7 @@
"output_type": "stream",
"name": "stdout",
"text": [
"https://m97ojc7rz8g-496ff2e9c6d22116-8092-colab.googleusercontent.com/front/\n"
"https://ayh2m6j6xsd-496ff2e9c6d22116-8092-colab.googleusercontent.com/front/\n"
]
}
]
@ -392,7 +522,7 @@
"colab": {
"collapsed_sections": [],
"provenance": [],
"authorship_tag": "ABX9TyNKyuSHnQ2YtV79Qu1lmq3X",
"authorship_tag": "ABX9TyPr96AMaFVFBXjmM/2mCqZO",
"include_colab_link": true
},
"gpuClass": "standard",
@ -405,7 +535,7 @@
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"d1c9c8fc7db14c05ab0b749c06d28757": {
"fad16a0235aa4e5bb2b8de5fcb183243": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@ -420,14 +550,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_f6791dc0da564f81b3176ec1f8033a0c",
"IPY_MODEL_5ea49bc3274b4fb3a00fae03c22bf28c",
"IPY_MODEL_66c0b6c9b8b24bcf8bcfce6cc9d66d16"
"IPY_MODEL_bc5c75fcb2e44548ab5aa978eeb9b8a6",
"IPY_MODEL_62c8e5c4546c4c17ad4125ddb0907d63",
"IPY_MODEL_52fed3e4db2747c2b70828a73073e909"
],
"layout": "IPY_MODEL_741f6105a3244cc39d07c87b61a6db70"
"layout": "IPY_MODEL_0fc41e46c8fa4853b88a2af2345be149"
}
},
"f6791dc0da564f81b3176ec1f8033a0c": {
"bc5c75fcb2e44548ab5aa978eeb9b8a6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@ -442,13 +572,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_3fde19555e6a44dc94584bb5e3e45230",
"layout": "IPY_MODEL_ea2165bce13c4823bf8d9d77d4b63f49",
"placeholder": "",
"style": "IPY_MODEL_f6a1ecd1738841fc829e341e2ca8b8e2",
"style": "IPY_MODEL_8b51c58c91d3418c8d6dc619af78dafa",
"value": "100%"
}
},
"5ea49bc3274b4fb3a00fae03c22bf28c": {
"62c8e5c4546c4c17ad4125ddb0907d63": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@ -464,15 +594,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_c2b0e85192e14f81b24bc60c2927367f",
"layout": "IPY_MODEL_2f511db422d5487fab18d16a8b61b585",
"max": 378435957,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_d387b634dac34baeb70ad7ec290960f4",
"style": "IPY_MODEL_4c8d6b8d405e4ecf841ff782fd7a34cb",
"value": 378435957
}
},
"66c0b6c9b8b24bcf8bcfce6cc9d66d16": {
"52fed3e4db2747c2b70828a73073e909": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@ -487,13 +617,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5786621a68b94255ab505105a4f567e4",
"layout": "IPY_MODEL_96954daa268a471cabedd434935aac23",
"placeholder": "",
"style": "IPY_MODEL_69c64360c23d4af9a18f7d197c792c0d",
"value": " 361M/361M [01:04&lt;00:00, 1.73MB/s]"
"style": "IPY_MODEL_de6bcd48cc164bcd99825a250b70cb53",
"value": " 361M/361M [00:25&lt;00:00, 7.62MB/s]"
}
},
"741f6105a3244cc39d07c87b61a6db70": {
"0fc41e46c8fa4853b88a2af2345be149": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@ -545,7 +675,7 @@
"width": null
}
},
"3fde19555e6a44dc94584bb5e3e45230": {
"ea2165bce13c4823bf8d9d77d4b63f49": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@ -597,7 +727,7 @@
"width": null
}
},
"f6a1ecd1738841fc829e341e2ca8b8e2": {
"8b51c58c91d3418c8d6dc619af78dafa": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@ -612,7 +742,7 @@
"description_width": ""
}
},
"c2b0e85192e14f81b24bc60c2927367f": {
"2f511db422d5487fab18d16a8b61b585": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@ -664,7 +794,7 @@
"width": null
}
},
"d387b634dac34baeb70ad7ec290960f4": {
"4c8d6b8d405e4ecf841ff782fd7a34cb": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@ -680,7 +810,7 @@
"description_width": ""
}
},
"5786621a68b94255ab505105a4f567e4": {
"96954daa268a471cabedd434935aac23": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@ -732,7 +862,7 @@
"width": null
}
},
"69c64360c23d4af9a18f7d197c792c0d": {
"de6bcd48cc164bcd99825a250b70cb53": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@ -747,7 +877,7 @@
"description_width": ""
}
},
"86662c7f8cf24bd2ab30a25e9376810a": {
"0239844e12e64b9981e9e78dcf57d0ef": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@ -762,14 +892,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_ef214cd0a5ed4fc98a0252fe7626a784",
"IPY_MODEL_24ee783ae0c545bca6669d76b9edc659",
"IPY_MODEL_cdfc92c62f5a48628630516c50beb1e4"
"IPY_MODEL_2bf83e0402c2485b998b35ef783b3548",
"IPY_MODEL_f83daf5b13204f0a9b9dc1ee0271e6b0",
"IPY_MODEL_6d46c9a7d2714add9164ba6487739b57"
],
"layout": "IPY_MODEL_338b0dea05dd40df9df80aa9e03f6d2d"
"layout": "IPY_MODEL_a7cf75ed1bd94a238253fa071d5b3150"
}
},
"ef214cd0a5ed4fc98a0252fe7626a784": {
"2bf83e0402c2485b998b35ef783b3548": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@ -784,13 +914,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d5304913d0c34891804dadc55619df14",
"layout": "IPY_MODEL_a50e5de44a474d6c863258fbd14d0401",
"placeholder": "",
"style": "IPY_MODEL_630430c86ad54fbdbca9ea979f6ee5af",
"style": "IPY_MODEL_c82e786218ed47ab80ae5173b690fffe",
"value": "100%"
}
},
"24ee783ae0c545bca6669d76b9edc659": {
"f83daf5b13204f0a9b9dc1ee0271e6b0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@ -806,15 +936,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_afb96e0bbf2944948734ebc7536bc5b4",
"layout": "IPY_MODEL_28f5c855824b4a0eb899b196a2356b45",
"max": 75329769,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_8523ea8056334830b8029b40f680c919",
"style": "IPY_MODEL_7956a1d6392b4b6fab81e098e54dfefc",
"value": 75329769
}
},
"cdfc92c62f5a48628630516c50beb1e4": {
"6d46c9a7d2714add9164ba6487739b57": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@ -829,13 +959,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_bd733abfa27d49e79205a8c8b83a7d56",
"layout": "IPY_MODEL_19a1448c941249eb81d0d9bcdb3c6739",
"placeholder": "",
"style": "IPY_MODEL_bdc3ec183e854783bd5872dfbab2b1d1",
"value": " 71.8M/71.8M [00:07&lt;00:00, 9.65MB/s]"
"style": "IPY_MODEL_6f41807bbd764265879de3b83d247ad4",
"value": " 71.8M/71.8M [00:02&lt;00:00, 34.0MB/s]"
}
},
"338b0dea05dd40df9df80aa9e03f6d2d": {
"a7cf75ed1bd94a238253fa071d5b3150": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@ -887,7 +1017,7 @@
"width": null
}
},
"d5304913d0c34891804dadc55619df14": {
"a50e5de44a474d6c863258fbd14d0401": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@ -939,7 +1069,7 @@
"width": null
}
},
"630430c86ad54fbdbca9ea979f6ee5af": {
"c82e786218ed47ab80ae5173b690fffe": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@ -954,7 +1084,7 @@
"description_width": ""
}
},
"afb96e0bbf2944948734ebc7536bc5b4": {
"28f5c855824b4a0eb899b196a2356b45": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@ -1006,7 +1136,7 @@
"width": null
}
},
"8523ea8056334830b8029b40f680c919": {
"7956a1d6392b4b6fab81e098e54dfefc": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@ -1022,7 +1152,7 @@
"description_width": ""
}
},
"bd733abfa27d49e79205a8c8b83a7d56": {
"19a1448c941249eb81d0d9bcdb3c6739": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@ -1074,7 +1204,7 @@
"width": null
}
},
"bdc3ec183e854783bd5872dfbab2b1d1": {
"6f41807bbd764265879de3b83d247ad4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@ -1089,7 +1219,7 @@
"description_width": ""
}
},
"60c0c9c8c8d7408e8225218063184b30": {
"1b89d116460746cb90858d77ff65cffa": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@ -1104,14 +1234,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_8993b4dc621a4d9d86f34816c35ba586",
"IPY_MODEL_31a006a5b20749428459f18d20c244c4",
"IPY_MODEL_350d51f1af7d41018fe8e7a95d51e5d6"
"IPY_MODEL_6d7b8dd5f7cc41329cfc590141f3927a",
"IPY_MODEL_878fc80433d84cb98b607629c8fecf08",
"IPY_MODEL_cc841ac2ac954db78989389970890582"
],
"layout": "IPY_MODEL_82aa6f8faed74f1baa2e5673ce78a7e0"
"layout": "IPY_MODEL_bb701d96133442c6b3aa70ddc585d01c"
}
},
"8993b4dc621a4d9d86f34816c35ba586": {
"6d7b8dd5f7cc41329cfc590141f3927a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@ -1126,13 +1256,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5c5ba05e0cca4810991903b7f37af96b",
"layout": "IPY_MODEL_e38d4376820c40de97d97c78b119cd4f",
"placeholder": "",
"style": "IPY_MODEL_65a95487f3594da2924ed12340032eaf",
"style": "IPY_MODEL_59323fae26814e03bad57866d75b76f1",
"value": "100%"
}
},
"31a006a5b20749428459f18d20c244c4": {
"878fc80433d84cb98b607629c8fecf08": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@ -1148,15 +1278,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_21dd227254924fcc8d75d9187a393f11",
"layout": "IPY_MODEL_b5b11bfc014c4a76a421012fb096e8e5",
"max": 57562349,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_1cf612f6c11847d89721cab4b6d88223",
"style": "IPY_MODEL_5da63d520023436aa71101b5561a5744",
"value": 57562349
}
},
"350d51f1af7d41018fe8e7a95d51e5d6": {
"cc841ac2ac954db78989389970890582": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@ -1171,13 +1301,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_7e031f847c4d4c9f80dd80d8041f16e8",
"layout": "IPY_MODEL_3040cd18ddae4853801274c3f10d17b0",
"placeholder": "",
"style": "IPY_MODEL_a2d3c4edf54d41a5b65f28d967b1be77",
"value": " 54.9M/54.9M [00:08&lt;00:00, 4.66MB/s]"
"style": "IPY_MODEL_e533525617774461991000eb56899c0b",
"value": " 54.9M/54.9M [00:02&lt;00:00, 19.4MB/s]"
}
},
"82aa6f8faed74f1baa2e5673ce78a7e0": {
"bb701d96133442c6b3aa70ddc585d01c": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@ -1229,7 +1359,7 @@
"width": null
}
},
"5c5ba05e0cca4810991903b7f37af96b": {
"e38d4376820c40de97d97c78b119cd4f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@ -1281,7 +1411,7 @@
"width": null
}
},
"65a95487f3594da2924ed12340032eaf": {
"59323fae26814e03bad57866d75b76f1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@ -1296,7 +1426,7 @@
"description_width": ""
}
},
"21dd227254924fcc8d75d9187a393f11": {
"b5b11bfc014c4a76a421012fb096e8e5": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@ -1348,7 +1478,7 @@
"width": null
}
},
"1cf612f6c11847d89721cab4b6d88223": {
"5da63d520023436aa71101b5561a5744": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@ -1364,7 +1494,7 @@
"description_width": ""
}
},
"7e031f847c4d4c9f80dd80d8041f16e8": {
"3040cd18ddae4853801274c3f10d17b0": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@ -1416,7 +1546,7 @@
"width": null
}
},
"a2d3c4edf54d41a5b65f28d967b1be77": {
"e533525617774461991000eb56899c0b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",