WIP: Pitch extractor refactoring

This commit is contained in:
w-okada 2023-07-15 04:53:38 +09:00
parent a69c89255b
commit 6a09338af5
3 changed files with 14 additions and 83 deletions

View File

@ -110,7 +110,6 @@ class Pipeline(object):
# -> [Perform]: 0.029046058654785156 0.0025115013122558594 (CPU i9 13900KF)
# ---> これくらいの処理ならCPU上のTorchでやった方が早い
'''
# volume_t = self.volumeExtractor.extract_t(audio)
volume_t = self.volumeExtractor.extract_t(audio)
mask = self.volumeExtractor.get_mask_from_volume_t(volume_t, self.inferencer_block_size, threshold=threshold)
volume = volume_t.unsqueeze(-1).unsqueeze(0)
@ -136,8 +135,7 @@ class Pipeline(object):
# ピッチ検出
try:
# print("[SRC AUDIO----]", audio_pad)
pitch, pitchf = self.pitchExtractor.extract(
pitch = self.pitchExtractor.extract(
audio16k.squeeze(),
pitchf,
f0_up_key,
@ -146,8 +144,7 @@ class Pipeline(object):
silence_front=silence_front,
)
pitch = torch.tensor(pitch[-n_frames:], device=self.device).unsqueeze(0).long() # 160window sizeを前提にバッファを作っているので切る。
pitchf = torch.tensor(pitchf[-n_frames:], device=self.device, dtype=torch.float).unsqueeze(0) # 160window sizeを前提にバッファを作っているので切る。
pitch = torch.tensor(pitch[-n_frames:], device=self.device).unsqueeze(0).long()
except IndexError as e: # NOQA
# print(e)
raise NotEnoughDataExtimateF0()
@ -217,12 +214,12 @@ class Pipeline(object):
try:
with torch.no_grad():
with autocast(enabled=self.isHalf):
print("[EMBEDDER EXTRACT:::]", feats.shape, pitchf.unsqueeze(-1).shape, volume.shape, mask.shape)
print("[EMBEDDER EXTRACT:::]", feats.shape, pitch.unsqueeze(-1).shape, volume.shape, mask.shape)
audio1 = (
torch.clip(
self.inferencer.infer(
feats,
pitchf.unsqueeze(-1),
pitch.unsqueeze(-1),
volume,
mask,
sid,
@ -243,12 +240,12 @@ class Pipeline(object):
raise e
feats_buffer = feats.squeeze(0).detach().cpu()
if pitchf is not None:
pitchf_buffer = pitchf.squeeze(0).detach().cpu()
if pitch is not None:
pitch_buffer = pitch.squeeze(0).detach().cpu()
else:
pitchf_buffer = None
pitch_buffer = None
del pitch, pitchf, feats, sid
torch.cuda.empty_cache()
audio1 = self.resamplerOut(audio1.float())
return audio1, pitchf_buffer, feats_buffer
return audio1, pitch_buffer, feats_buffer

View File

@ -2,7 +2,7 @@ import pyworld
import numpy as np
import scipy.signal as signal
from const import PitchExtractorType
import torch
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
@ -12,45 +12,18 @@ class HarvestPitchExtractor(PitchExtractor):
super().__init__()
self.pitchExtractorType: PitchExtractorType = "harvest"
def extract(self, audio, pitchf, f0_up_key, sr, window, silence_front=0):
def extract(self, audio: torch.Tensor, pitchf, f0_up_key, sr, window, silence_front=0):
audio = audio.detach().cpu().numpy()
n_frames = int(len(audio) // window) + 1 # NOQA
start_frame = int(silence_front * sr / window)
real_silence_front = start_frame * window / sr
# silence_front_offset = int(np.round(real_silence_front * sr))
# audio = audio[silence_front_offset:]
f0_min = 50
f0_max = 1100
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
# f0_mel_min = 1127 * np.log(1 + f0_min / 700)
# f0_mel_max = 1127 * np.log(1 + f0_max / 700)
f0 = self.extract2(audio, uv_interp=True, hop_size=window, silence_front=silence_front)
f0 = f0 * 2 ** (float(f0_up_key) / 12)
pitchf = f0
# f0, t = pyworld.harvest(
# audio.astype(np.double),
# fs=sr,
# f0_ceil=f0_max,
# frame_period=10,
# )
# f0 = pyworld.stonemask(audio.astype(np.double), f0, t, sr)
# f0 = signal.medfilt(f0, 3)
# f0 *= pow(2, f0_up_key / 12)
# pitchf[-f0.shape[0]:] = f0[:pitchf.shape[0]]
f0bak = pitchf.copy()
f0_mel = 1127 * np.log(1 + f0bak / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
f0_mel_max - f0_mel_min
) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
pitch_coarse = np.rint(f0_mel).astype(int)
return pitch_coarse, pitchf
return f0
def extract2(self, audio, uv_interp, hop_size: int, silence_front=0): # audio: 1d numpy array
n_frames = int(len(audio) // hop_size) + 1
@ -75,38 +48,3 @@ class HarvestPitchExtractor(PitchExtractor):
return f0
def extract_old(self, audio, pitchf, f0_up_key, sr, window, silence_front=0):
audio = audio.detach().cpu().numpy()
n_frames = int(len(audio) // window) + 1 # NOQA
start_frame = int(silence_front * sr / window)
real_silence_front = start_frame * window / sr
silence_front_offset = int(np.round(real_silence_front * sr))
audio = audio[silence_front_offset:]
f0_min = 50
f0_max = 1100
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
f0, t = pyworld.harvest(
audio.astype(np.double),
fs=sr,
f0_ceil=f0_max,
frame_period=10,
)
f0 = pyworld.stonemask(audio.astype(np.double), f0, t, sr)
f0 = signal.medfilt(f0, 3)
f0 *= pow(2, f0_up_key / 12)
pitchf[-f0.shape[0]:] = f0[:pitchf.shape[0]]
f0bak = pitchf.copy()
f0_mel = 1127 * np.log(1 + f0bak / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
f0_mel_max - f0_mel_min
) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
pitch_coarse = np.rint(f0_mel).astype(int)
return pitch_coarse, pitchf

View File

@ -2,9 +2,6 @@ import numpy as np
import torch
import torch.nn as nn
from voice_changer.utils.VoiceChangerModel import AudioInOut
class VolumeExtractor:
def __init__(self, hop_size: float):
@ -56,7 +53,6 @@ class VolumeExtractor:
mask = torch.max(mask.unfold(-1, 9, 1), -1)[0]
mask = mask.to(device).unsqueeze(-1).unsqueeze(0)
mask = upsample(mask, block_size).squeeze(-1)
print("[get_mask_from_volume_t 3]", mask.shape)
return mask