voice-changer/server/voice_changer/DiffusionSVC/pitchExtractor/HarvestPitchExtractor.py
2023-07-15 04:53:38 +09:00

50 lines
1.7 KiB
Python

import pyworld
import numpy as np
import scipy.signal as signal
from const import PitchExtractorType
import torch
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
class HarvestPitchExtractor(PitchExtractor):
def __init__(self):
super().__init__()
self.pitchExtractorType: PitchExtractorType = "harvest"
def extract(self, audio: torch.Tensor, pitchf, f0_up_key, sr, window, silence_front=0):
audio = audio.detach().cpu().numpy()
f0_min = 50
f0_max = 1100
# f0_mel_min = 1127 * np.log(1 + f0_min / 700)
# f0_mel_max = 1127 * np.log(1 + f0_max / 700)
f0 = self.extract2(audio, uv_interp=True, hop_size=window, silence_front=silence_front)
f0 = f0 * 2 ** (float(f0_up_key) / 12)
# pitchf[-f0.shape[0]:] = f0[:pitchf.shape[0]]
return f0
def extract2(self, audio, uv_interp, hop_size: int, silence_front=0): # audio: 1d numpy array
n_frames = int(len(audio) // hop_size) + 1
start_frame = int(silence_front * 16000 / hop_size)
real_silence_front = start_frame * hop_size / 16000
audio = audio[int(np.round(real_silence_front * 16000)):]
f0, _ = pyworld.harvest(
audio.astype('double'),
16000,
f0_floor=50,
f0_ceil=1100,
frame_period=(1000 * hop_size / 16000))
f0 = np.pad(f0.astype('float'), (start_frame, n_frames - len(f0) - start_frame))
if uv_interp:
uv = f0 == 0
if len(f0[~uv]) > 0:
f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv])
f0[f0 < 50] = 50
return f0