mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 05:25:01 +03:00
Colaboratory を使用して作成しました
This commit is contained in:
parent
f8823cb7e2
commit
9d5c714526
304
SoftVcDemo.ipynb
304
SoftVcDemo.ipynb
@ -46,7 +46,7 @@
|
||||
],
|
||||
"metadata": {
|
||||
"id": "cGXhQNzhrQxO",
|
||||
"outputId": "19f8cd58-28ff-4e02-86fa-8a2484dabf6a",
|
||||
"outputId": "94ff2bc1-605a-4e6a-b33b-705163892777",
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
}
|
||||
@ -57,7 +57,7 @@
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"Sun Sep 18 22:18:45 2022 \n",
|
||||
"Sat Oct 29 00:50:05 2022 \n",
|
||||
"+-----------------------------------------------------------------------------+\n",
|
||||
"| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |\n",
|
||||
"|-------------------------------+----------------------+----------------------+\n",
|
||||
@ -66,7 +66,7 @@
|
||||
"| | | MIG M. |\n",
|
||||
"|===============================+======================+======================|\n",
|
||||
"| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n",
|
||||
"| N/A 35C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |\n",
|
||||
"| N/A 67C P8 11W / 70W | 0MiB / 15109MiB | 0% Default |\n",
|
||||
"| | | N/A |\n",
|
||||
"+-------------------------------+----------------------+----------------------+\n",
|
||||
" \n",
|
||||
@ -100,12 +100,12 @@
|
||||
],
|
||||
"metadata": {
|
||||
"id": "od54JTHBrysO",
|
||||
"outputId": "267858d4-94f2-4606-e10c-d2b872248337",
|
||||
"outputId": "82736831-751e-4e28-8c29-90c95e7b86b8",
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
}
|
||||
},
|
||||
"execution_count": 3,
|
||||
"execution_count": 2,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
@ -113,32 +113,32 @@
|
||||
"text": [
|
||||
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
||||
"Collecting fastapi\n",
|
||||
" Downloading fastapi-0.85.0-py3-none-any.whl (55 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 55 kB 3.0 MB/s \n",
|
||||
"\u001b[?25hRequirement already satisfied: pydantic!=1.7,!=1.7.1,!=1.7.2,!=1.7.3,!=1.8,!=1.8.1,<2.0.0,>=1.6.2 in /usr/local/lib/python3.7/dist-packages (from fastapi) (1.9.2)\n",
|
||||
"Collecting starlette==0.20.4\n",
|
||||
" Downloading fastapi-0.85.1-py3-none-any.whl (55 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 55 kB 1.5 MB/s \n",
|
||||
"\u001b[?25hCollecting starlette==0.20.4\n",
|
||||
" Downloading starlette-0.20.4-py3-none-any.whl (63 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 63 kB 2.5 MB/s \n",
|
||||
"\u001b[?25hRequirement already satisfied: typing-extensions>=3.10.0 in /usr/local/lib/python3.7/dist-packages (from starlette==0.20.4->fastapi) (4.1.1)\n",
|
||||
"\u001b[K |████████████████████████████████| 63 kB 1.3 MB/s \n",
|
||||
"\u001b[?25hRequirement already satisfied: pydantic!=1.7,!=1.7.1,!=1.7.2,!=1.7.3,!=1.8,!=1.8.1,<2.0.0,>=1.6.2 in /usr/local/lib/python3.7/dist-packages (from fastapi) (1.10.2)\n",
|
||||
"Collecting anyio<5,>=3.4.0\n",
|
||||
" Downloading anyio-3.6.1-py3-none-any.whl (80 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 80 kB 10.8 MB/s \n",
|
||||
"\u001b[?25hRequirement already satisfied: idna>=2.8 in /usr/local/lib/python3.7/dist-packages (from anyio<5,>=3.4.0->starlette==0.20.4->fastapi) (2.10)\n",
|
||||
" Downloading anyio-3.6.2-py3-none-any.whl (80 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 80 kB 9.6 MB/s \n",
|
||||
"\u001b[?25hRequirement already satisfied: typing-extensions>=3.10.0 in /usr/local/lib/python3.7/dist-packages (from starlette==0.20.4->fastapi) (4.1.1)\n",
|
||||
"Collecting sniffio>=1.1\n",
|
||||
" Downloading sniffio-1.3.0-py3-none-any.whl (10 kB)\n",
|
||||
"Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.7/dist-packages (from anyio<5,>=3.4.0->starlette==0.20.4->fastapi) (2.10)\n",
|
||||
"Installing collected packages: sniffio, anyio, starlette, fastapi\n",
|
||||
"Successfully installed anyio-3.6.1 fastapi-0.85.0 sniffio-1.3.0 starlette-0.20.4\n",
|
||||
"Successfully installed anyio-3.6.2 fastapi-0.85.1 sniffio-1.3.0 starlette-0.20.4\n",
|
||||
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
||||
"Collecting uvicorn\n",
|
||||
" Downloading uvicorn-0.18.3-py3-none-any.whl (57 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 57 kB 3.8 MB/s \n",
|
||||
" Downloading uvicorn-0.19.0-py3-none-any.whl (56 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 56 kB 5.0 MB/s \n",
|
||||
"\u001b[?25hCollecting h11>=0.8\n",
|
||||
" Downloading h11-0.13.0-py3-none-any.whl (58 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 58 kB 6.3 MB/s \n",
|
||||
"\u001b[?25hRequirement already satisfied: click>=7.0 in /usr/local/lib/python3.7/dist-packages (from uvicorn) (7.1.2)\n",
|
||||
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from uvicorn) (4.1.1)\n",
|
||||
" Downloading h11-0.14.0-py3-none-any.whl (58 kB)\n",
|
||||
"\u001b[K |████████████████████████████████| 58 kB 7.0 MB/s \n",
|
||||
"\u001b[?25hRequirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from uvicorn) (4.1.1)\n",
|
||||
"Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.7/dist-packages (from uvicorn) (7.1.2)\n",
|
||||
"Installing collected packages: h11, uvicorn\n",
|
||||
"Successfully installed h11-0.13.0 uvicorn-0.18.3\n"
|
||||
"Successfully installed h11-0.14.0 uvicorn-0.19.0\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
@ -152,7 +152,7 @@
|
||||
"metadata": {
|
||||
"id": "eCb2j68vsqxB"
|
||||
},
|
||||
"execution_count": 5,
|
||||
"execution_count": 3,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
@ -167,49 +167,49 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"id": "WO8XzrFMZGoj",
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 324,
|
||||
"referenced_widgets": [
|
||||
"fad16a0235aa4e5bb2b8de5fcb183243",
|
||||
"bc5c75fcb2e44548ab5aa978eeb9b8a6",
|
||||
"62c8e5c4546c4c17ad4125ddb0907d63",
|
||||
"52fed3e4db2747c2b70828a73073e909",
|
||||
"0fc41e46c8fa4853b88a2af2345be149",
|
||||
"ea2165bce13c4823bf8d9d77d4b63f49",
|
||||
"8b51c58c91d3418c8d6dc619af78dafa",
|
||||
"2f511db422d5487fab18d16a8b61b585",
|
||||
"4c8d6b8d405e4ecf841ff782fd7a34cb",
|
||||
"96954daa268a471cabedd434935aac23",
|
||||
"de6bcd48cc164bcd99825a250b70cb53",
|
||||
"0239844e12e64b9981e9e78dcf57d0ef",
|
||||
"2bf83e0402c2485b998b35ef783b3548",
|
||||
"f83daf5b13204f0a9b9dc1ee0271e6b0",
|
||||
"6d46c9a7d2714add9164ba6487739b57",
|
||||
"a7cf75ed1bd94a238253fa071d5b3150",
|
||||
"a50e5de44a474d6c863258fbd14d0401",
|
||||
"c82e786218ed47ab80ae5173b690fffe",
|
||||
"28f5c855824b4a0eb899b196a2356b45",
|
||||
"7956a1d6392b4b6fab81e098e54dfefc",
|
||||
"19a1448c941249eb81d0d9bcdb3c6739",
|
||||
"6f41807bbd764265879de3b83d247ad4",
|
||||
"1b89d116460746cb90858d77ff65cffa",
|
||||
"6d7b8dd5f7cc41329cfc590141f3927a",
|
||||
"878fc80433d84cb98b607629c8fecf08",
|
||||
"cc841ac2ac954db78989389970890582",
|
||||
"bb701d96133442c6b3aa70ddc585d01c",
|
||||
"e38d4376820c40de97d97c78b119cd4f",
|
||||
"59323fae26814e03bad57866d75b76f1",
|
||||
"b5b11bfc014c4a76a421012fb096e8e5",
|
||||
"5da63d520023436aa71101b5561a5744",
|
||||
"3040cd18ddae4853801274c3f10d17b0",
|
||||
"e533525617774461991000eb56899c0b"
|
||||
"448ffee4cfcc46e9901407ff874e66da",
|
||||
"14622f0216234751b0a41166ef25b3f2",
|
||||
"5c634bbb4dc14d6694857bce8ac36f26",
|
||||
"b1719d7b5c1c48cd985cf572835ad40a",
|
||||
"3a614c1ca4c543589a4123c993ec3216",
|
||||
"95bbbbf55a584c9388c59bbf46a17413",
|
||||
"b2a710c0a5794c3c99a12dc883650f9e",
|
||||
"f33a6781e368450785d64b611e893b7e",
|
||||
"7cbcfefdd5bc4c278848a18744f48055",
|
||||
"6c89e189d73c4b87ac7943705f4c1178",
|
||||
"459cef048dde4730bffc4468d67f54e6",
|
||||
"fee6169deac949fbbb133dc68fd2e932",
|
||||
"f82aecbc83dd4ba5b4e6a1ba7b6bfddd",
|
||||
"7d25f1e877ec48718a5ec8a136ef8f57",
|
||||
"a73ad267948e48c58e5d68da0de03e0b",
|
||||
"b1110b3fa84c4303ad9c14d97fd55800",
|
||||
"6f2b4a40cb1a435e91f47ac47fce26d5",
|
||||
"47a80ad9100546269c5d08a484fe645b",
|
||||
"79d09615198c49fb9d874c7b4f61cb69",
|
||||
"95a17dff28144876b3cbee3658b72fdb",
|
||||
"942c168f8d9c40ae9ca0b7735f4511a8",
|
||||
"8c959e29f913426786a594c2ef933fa8",
|
||||
"efc33a54c86a4ce295d5c36868f033e5",
|
||||
"7e237c94a5fa4a5a8858a35dc011f58c",
|
||||
"1b3d4fbf170c491e97c2bb844ffa57ac",
|
||||
"951dc9b591f744f1b7275182f5869d17",
|
||||
"a05b7db42e1c4b3db5d908f46a8dbc9a",
|
||||
"9260115f89f0496d81dabaad29b590e1",
|
||||
"61ba6c17718b42a3a79c10eadc8ad430",
|
||||
"55cdbdf3963e40a3b580b4dd4ef8bcbd",
|
||||
"e1ef61fb615a41f5b73ee4a19572a3ab",
|
||||
"fef62009c9754424913be4ff0cb2d77b",
|
||||
"81bf1264af4d4b819a36f1d21cde5afe"
|
||||
]
|
||||
},
|
||||
"outputId": "acd54070-6987-466f-d3ae-11f1ae22fbad"
|
||||
"outputId": "d494a045-1455-4e54-9618-0bc9041d7c4f"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
@ -231,7 +231,7 @@
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"version_major": 2,
|
||||
"version_minor": 0,
|
||||
"model_id": "fad16a0235aa4e5bb2b8de5fcb183243"
|
||||
"model_id": "448ffee4cfcc46e9901407ff874e66da"
|
||||
}
|
||||
},
|
||||
"metadata": {}
|
||||
@ -255,7 +255,7 @@
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"version_major": 2,
|
||||
"version_minor": 0,
|
||||
"model_id": "0239844e12e64b9981e9e78dcf57d0ef"
|
||||
"model_id": "fee6169deac949fbbb133dc68fd2e932"
|
||||
}
|
||||
},
|
||||
"metadata": {}
|
||||
@ -277,7 +277,7 @@
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"version_major": 2,
|
||||
"version_minor": 0,
|
||||
"model_id": "1b89d116460746cb90858d77ff65cffa"
|
||||
"model_id": "efc33a54c86a4ce295d5c36868f033e5"
|
||||
}
|
||||
},
|
||||
"metadata": {}
|
||||
@ -308,13 +308,13 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "lzo_ZWmAjaby",
|
||||
"outputId": "425649e6-8c52-4142-869f-079d99bf958c"
|
||||
"outputId": "91b98713-b045-4acc-a51f-421ca16565a8"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
@ -322,28 +322,38 @@
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"Cloning into 'voice-changer'...\n",
|
||||
"remote: Enumerating objects: 101, done.\u001b[K\n",
|
||||
"remote: Counting objects: 100% (101/101), done.\u001b[K\n",
|
||||
"remote: Compressing objects: 100% (87/87), done.\u001b[K\n",
|
||||
"remote: Total 101 (delta 12), reused 70 (delta 6), pack-reused 0\u001b[K\n",
|
||||
"Receiving objects: 100% (101/101), 18.97 MiB | 21.06 MiB/s, done.\n",
|
||||
"Resolving deltas: 100% (12/12), done.\n",
|
||||
"remote: Enumerating objects: 81, done.\u001b[K\n",
|
||||
"remote: Counting objects: 100% (81/81), done.\u001b[K\n",
|
||||
"remote: Compressing objects: 100% (68/68), done.\u001b[K\n",
|
||||
"remote: Total 81 (delta 12), reused 51 (delta 5), pack-reused 0\u001b[K\n",
|
||||
"Unpacking objects: 100% (81/81), done.\n",
|
||||
"Note: checking out 'f8823cb7e2025f13227f5918408cceda224bf9f0'.\n",
|
||||
"\n",
|
||||
"You are in 'detached HEAD' state. You can look around, make experimental\n",
|
||||
"changes and commit them, and you can discard any commits you make in this\n",
|
||||
"state without impacting any branches by performing another checkout.\n",
|
||||
"\n",
|
||||
"If you want to create a new branch to retain commits you create, you may\n",
|
||||
"do so (now or later) by using -b with the checkout command again. Example:\n",
|
||||
"\n",
|
||||
" git checkout -b <new-branch-name>\n",
|
||||
"\n",
|
||||
"/content/voice-changer/demo\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# (4-1) Clone Repository\n",
|
||||
"!git clone --depth 1 https://github.com/w-okada/voice-changer.git\n",
|
||||
"!git clone --depth 1 https://github.com/w-okada/voice-changer.git -b ver_1.0\n",
|
||||
"%cd voice-changer/demo/"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"id": "8-z9j4e_j-Wb",
|
||||
"outputId": "a4855bb5-15d6-44f6-9201-8a78ea2f2309",
|
||||
"outputId": "e7cd3270-42dd-4f6c-912c-cdb0718c04cf",
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
}
|
||||
@ -416,7 +426,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"id": "-iPiSzvAepCl"
|
||||
},
|
||||
@ -429,13 +439,13 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": 10,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "IiWSwDjQidc7",
|
||||
"outputId": "aab57f3f-45b5-4d67-ea9c-d522178c0560"
|
||||
"outputId": "7611ea92-4841-4c53-f727-e950c0a2cf20"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
@ -447,7 +457,7 @@
|
||||
"Using cache found in /root/.cache/torch/hub/bshall_hifigan_main\n",
|
||||
"INFO: Will watch for changes in these directories: ['/content/voice-changer/demo']\n",
|
||||
"INFO: Uvicorn running on http://0.0.0.0:8092 (Press CTRL+C to quit)\n",
|
||||
"INFO: Started reloader process [281] using StatReload\n",
|
||||
"INFO: Started reloader process [209] using StatReload\n",
|
||||
"ENV: colab\n",
|
||||
"Removing weight norm...\n",
|
||||
"Using cache found in /root/.cache/torch/hub/bshall_hubert_main\n",
|
||||
@ -456,7 +466,7 @@
|
||||
"Using cache found in /root/.cache/torch/hub/bshall_hubert_main\n",
|
||||
"Using cache found in /root/.cache/torch/hub/bshall_acoustic-model_main\n",
|
||||
"Using cache found in /root/.cache/torch/hub/bshall_hifigan_main\n",
|
||||
"INFO: Started server process [290]\n",
|
||||
"INFO: Started server process [218]\n",
|
||||
"INFO: Waiting for application startup.\n",
|
||||
"INFO: Application startup complete.\n"
|
||||
]
|
||||
@ -490,19 +500,19 @@
|
||||
],
|
||||
"metadata": {
|
||||
"id": "H8EpnHqDjknR",
|
||||
"outputId": "5a6611f0-fd18-4139-cbd9-85fc58401293",
|
||||
"outputId": "b0db9b8a-cc92-4d88-9913-055362b20a9d",
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 34
|
||||
}
|
||||
},
|
||||
"execution_count": 13,
|
||||
"execution_count": 11,
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"https://ayh2m6j6xsd-496ff2e9c6d22116-8092-colab.googleusercontent.com/front/\n"
|
||||
"https://zbz8418h3es-496ff2e9c6d22116-8092-colab.googleusercontent.com/front/\n"
|
||||
]
|
||||
}
|
||||
]
|
||||
@ -522,7 +532,7 @@
|
||||
"colab": {
|
||||
"collapsed_sections": [],
|
||||
"provenance": [],
|
||||
"authorship_tag": "ABX9TyPr96AMaFVFBXjmM/2mCqZO",
|
||||
"authorship_tag": "ABX9TyNIoYdRE9rtKaA9+L9JwdPZ",
|
||||
"include_colab_link": true
|
||||
},
|
||||
"gpuClass": "standard",
|
||||
@ -535,7 +545,7 @@
|
||||
},
|
||||
"widgets": {
|
||||
"application/vnd.jupyter.widget-state+json": {
|
||||
"fad16a0235aa4e5bb2b8de5fcb183243": {
|
||||
"448ffee4cfcc46e9901407ff874e66da": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "HBoxModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -550,14 +560,14 @@
|
||||
"_view_name": "HBoxView",
|
||||
"box_style": "",
|
||||
"children": [
|
||||
"IPY_MODEL_bc5c75fcb2e44548ab5aa978eeb9b8a6",
|
||||
"IPY_MODEL_62c8e5c4546c4c17ad4125ddb0907d63",
|
||||
"IPY_MODEL_52fed3e4db2747c2b70828a73073e909"
|
||||
"IPY_MODEL_14622f0216234751b0a41166ef25b3f2",
|
||||
"IPY_MODEL_5c634bbb4dc14d6694857bce8ac36f26",
|
||||
"IPY_MODEL_b1719d7b5c1c48cd985cf572835ad40a"
|
||||
],
|
||||
"layout": "IPY_MODEL_0fc41e46c8fa4853b88a2af2345be149"
|
||||
"layout": "IPY_MODEL_3a614c1ca4c543589a4123c993ec3216"
|
||||
}
|
||||
},
|
||||
"bc5c75fcb2e44548ab5aa978eeb9b8a6": {
|
||||
"14622f0216234751b0a41166ef25b3f2": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "HTMLModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -572,13 +582,13 @@
|
||||
"_view_name": "HTMLView",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_ea2165bce13c4823bf8d9d77d4b63f49",
|
||||
"layout": "IPY_MODEL_95bbbbf55a584c9388c59bbf46a17413",
|
||||
"placeholder": "",
|
||||
"style": "IPY_MODEL_8b51c58c91d3418c8d6dc619af78dafa",
|
||||
"style": "IPY_MODEL_b2a710c0a5794c3c99a12dc883650f9e",
|
||||
"value": "100%"
|
||||
}
|
||||
},
|
||||
"62c8e5c4546c4c17ad4125ddb0907d63": {
|
||||
"5c634bbb4dc14d6694857bce8ac36f26": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "FloatProgressModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -594,15 +604,15 @@
|
||||
"bar_style": "success",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_2f511db422d5487fab18d16a8b61b585",
|
||||
"layout": "IPY_MODEL_f33a6781e368450785d64b611e893b7e",
|
||||
"max": 378435957,
|
||||
"min": 0,
|
||||
"orientation": "horizontal",
|
||||
"style": "IPY_MODEL_4c8d6b8d405e4ecf841ff782fd7a34cb",
|
||||
"style": "IPY_MODEL_7cbcfefdd5bc4c278848a18744f48055",
|
||||
"value": 378435957
|
||||
}
|
||||
},
|
||||
"52fed3e4db2747c2b70828a73073e909": {
|
||||
"b1719d7b5c1c48cd985cf572835ad40a": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "HTMLModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -617,13 +627,13 @@
|
||||
"_view_name": "HTMLView",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_96954daa268a471cabedd434935aac23",
|
||||
"layout": "IPY_MODEL_6c89e189d73c4b87ac7943705f4c1178",
|
||||
"placeholder": "",
|
||||
"style": "IPY_MODEL_de6bcd48cc164bcd99825a250b70cb53",
|
||||
"value": " 361M/361M [00:25<00:00, 7.62MB/s]"
|
||||
"style": "IPY_MODEL_459cef048dde4730bffc4468d67f54e6",
|
||||
"value": " 361M/361M [01:38<00:00, 4.48MB/s]"
|
||||
}
|
||||
},
|
||||
"0fc41e46c8fa4853b88a2af2345be149": {
|
||||
"3a614c1ca4c543589a4123c993ec3216": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_name": "LayoutModel",
|
||||
"model_module_version": "1.2.0",
|
||||
@ -675,7 +685,7 @@
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"ea2165bce13c4823bf8d9d77d4b63f49": {
|
||||
"95bbbbf55a584c9388c59bbf46a17413": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_name": "LayoutModel",
|
||||
"model_module_version": "1.2.0",
|
||||
@ -727,7 +737,7 @@
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"8b51c58c91d3418c8d6dc619af78dafa": {
|
||||
"b2a710c0a5794c3c99a12dc883650f9e": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "DescriptionStyleModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -742,7 +752,7 @@
|
||||
"description_width": ""
|
||||
}
|
||||
},
|
||||
"2f511db422d5487fab18d16a8b61b585": {
|
||||
"f33a6781e368450785d64b611e893b7e": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_name": "LayoutModel",
|
||||
"model_module_version": "1.2.0",
|
||||
@ -794,7 +804,7 @@
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"4c8d6b8d405e4ecf841ff782fd7a34cb": {
|
||||
"7cbcfefdd5bc4c278848a18744f48055": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "ProgressStyleModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -810,7 +820,7 @@
|
||||
"description_width": ""
|
||||
}
|
||||
},
|
||||
"96954daa268a471cabedd434935aac23": {
|
||||
"6c89e189d73c4b87ac7943705f4c1178": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_name": "LayoutModel",
|
||||
"model_module_version": "1.2.0",
|
||||
@ -862,7 +872,7 @@
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"de6bcd48cc164bcd99825a250b70cb53": {
|
||||
"459cef048dde4730bffc4468d67f54e6": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "DescriptionStyleModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -877,7 +887,7 @@
|
||||
"description_width": ""
|
||||
}
|
||||
},
|
||||
"0239844e12e64b9981e9e78dcf57d0ef": {
|
||||
"fee6169deac949fbbb133dc68fd2e932": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "HBoxModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -892,14 +902,14 @@
|
||||
"_view_name": "HBoxView",
|
||||
"box_style": "",
|
||||
"children": [
|
||||
"IPY_MODEL_2bf83e0402c2485b998b35ef783b3548",
|
||||
"IPY_MODEL_f83daf5b13204f0a9b9dc1ee0271e6b0",
|
||||
"IPY_MODEL_6d46c9a7d2714add9164ba6487739b57"
|
||||
"IPY_MODEL_f82aecbc83dd4ba5b4e6a1ba7b6bfddd",
|
||||
"IPY_MODEL_7d25f1e877ec48718a5ec8a136ef8f57",
|
||||
"IPY_MODEL_a73ad267948e48c58e5d68da0de03e0b"
|
||||
],
|
||||
"layout": "IPY_MODEL_a7cf75ed1bd94a238253fa071d5b3150"
|
||||
"layout": "IPY_MODEL_b1110b3fa84c4303ad9c14d97fd55800"
|
||||
}
|
||||
},
|
||||
"2bf83e0402c2485b998b35ef783b3548": {
|
||||
"f82aecbc83dd4ba5b4e6a1ba7b6bfddd": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "HTMLModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -914,13 +924,13 @@
|
||||
"_view_name": "HTMLView",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_a50e5de44a474d6c863258fbd14d0401",
|
||||
"layout": "IPY_MODEL_6f2b4a40cb1a435e91f47ac47fce26d5",
|
||||
"placeholder": "",
|
||||
"style": "IPY_MODEL_c82e786218ed47ab80ae5173b690fffe",
|
||||
"style": "IPY_MODEL_47a80ad9100546269c5d08a484fe645b",
|
||||
"value": "100%"
|
||||
}
|
||||
},
|
||||
"f83daf5b13204f0a9b9dc1ee0271e6b0": {
|
||||
"7d25f1e877ec48718a5ec8a136ef8f57": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "FloatProgressModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -936,15 +946,15 @@
|
||||
"bar_style": "success",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_28f5c855824b4a0eb899b196a2356b45",
|
||||
"layout": "IPY_MODEL_79d09615198c49fb9d874c7b4f61cb69",
|
||||
"max": 75329769,
|
||||
"min": 0,
|
||||
"orientation": "horizontal",
|
||||
"style": "IPY_MODEL_7956a1d6392b4b6fab81e098e54dfefc",
|
||||
"style": "IPY_MODEL_95a17dff28144876b3cbee3658b72fdb",
|
||||
"value": 75329769
|
||||
}
|
||||
},
|
||||
"6d46c9a7d2714add9164ba6487739b57": {
|
||||
"a73ad267948e48c58e5d68da0de03e0b": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "HTMLModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -959,13 +969,13 @@
|
||||
"_view_name": "HTMLView",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_19a1448c941249eb81d0d9bcdb3c6739",
|
||||
"layout": "IPY_MODEL_942c168f8d9c40ae9ca0b7735f4511a8",
|
||||
"placeholder": "",
|
||||
"style": "IPY_MODEL_6f41807bbd764265879de3b83d247ad4",
|
||||
"value": " 71.8M/71.8M [00:02<00:00, 34.0MB/s]"
|
||||
"style": "IPY_MODEL_8c959e29f913426786a594c2ef933fa8",
|
||||
"value": " 71.8M/71.8M [00:23<00:00, 3.72MB/s]"
|
||||
}
|
||||
},
|
||||
"a7cf75ed1bd94a238253fa071d5b3150": {
|
||||
"b1110b3fa84c4303ad9c14d97fd55800": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_name": "LayoutModel",
|
||||
"model_module_version": "1.2.0",
|
||||
@ -1017,7 +1027,7 @@
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"a50e5de44a474d6c863258fbd14d0401": {
|
||||
"6f2b4a40cb1a435e91f47ac47fce26d5": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_name": "LayoutModel",
|
||||
"model_module_version": "1.2.0",
|
||||
@ -1069,7 +1079,7 @@
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"c82e786218ed47ab80ae5173b690fffe": {
|
||||
"47a80ad9100546269c5d08a484fe645b": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "DescriptionStyleModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -1084,7 +1094,7 @@
|
||||
"description_width": ""
|
||||
}
|
||||
},
|
||||
"28f5c855824b4a0eb899b196a2356b45": {
|
||||
"79d09615198c49fb9d874c7b4f61cb69": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_name": "LayoutModel",
|
||||
"model_module_version": "1.2.0",
|
||||
@ -1136,7 +1146,7 @@
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"7956a1d6392b4b6fab81e098e54dfefc": {
|
||||
"95a17dff28144876b3cbee3658b72fdb": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "ProgressStyleModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -1152,7 +1162,7 @@
|
||||
"description_width": ""
|
||||
}
|
||||
},
|
||||
"19a1448c941249eb81d0d9bcdb3c6739": {
|
||||
"942c168f8d9c40ae9ca0b7735f4511a8": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_name": "LayoutModel",
|
||||
"model_module_version": "1.2.0",
|
||||
@ -1204,7 +1214,7 @@
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"6f41807bbd764265879de3b83d247ad4": {
|
||||
"8c959e29f913426786a594c2ef933fa8": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "DescriptionStyleModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -1219,7 +1229,7 @@
|
||||
"description_width": ""
|
||||
}
|
||||
},
|
||||
"1b89d116460746cb90858d77ff65cffa": {
|
||||
"efc33a54c86a4ce295d5c36868f033e5": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "HBoxModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -1234,14 +1244,14 @@
|
||||
"_view_name": "HBoxView",
|
||||
"box_style": "",
|
||||
"children": [
|
||||
"IPY_MODEL_6d7b8dd5f7cc41329cfc590141f3927a",
|
||||
"IPY_MODEL_878fc80433d84cb98b607629c8fecf08",
|
||||
"IPY_MODEL_cc841ac2ac954db78989389970890582"
|
||||
"IPY_MODEL_7e237c94a5fa4a5a8858a35dc011f58c",
|
||||
"IPY_MODEL_1b3d4fbf170c491e97c2bb844ffa57ac",
|
||||
"IPY_MODEL_951dc9b591f744f1b7275182f5869d17"
|
||||
],
|
||||
"layout": "IPY_MODEL_bb701d96133442c6b3aa70ddc585d01c"
|
||||
"layout": "IPY_MODEL_a05b7db42e1c4b3db5d908f46a8dbc9a"
|
||||
}
|
||||
},
|
||||
"6d7b8dd5f7cc41329cfc590141f3927a": {
|
||||
"7e237c94a5fa4a5a8858a35dc011f58c": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "HTMLModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -1256,13 +1266,13 @@
|
||||
"_view_name": "HTMLView",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_e38d4376820c40de97d97c78b119cd4f",
|
||||
"layout": "IPY_MODEL_9260115f89f0496d81dabaad29b590e1",
|
||||
"placeholder": "",
|
||||
"style": "IPY_MODEL_59323fae26814e03bad57866d75b76f1",
|
||||
"style": "IPY_MODEL_61ba6c17718b42a3a79c10eadc8ad430",
|
||||
"value": "100%"
|
||||
}
|
||||
},
|
||||
"878fc80433d84cb98b607629c8fecf08": {
|
||||
"1b3d4fbf170c491e97c2bb844ffa57ac": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "FloatProgressModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -1278,15 +1288,15 @@
|
||||
"bar_style": "success",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_b5b11bfc014c4a76a421012fb096e8e5",
|
||||
"layout": "IPY_MODEL_55cdbdf3963e40a3b580b4dd4ef8bcbd",
|
||||
"max": 57562349,
|
||||
"min": 0,
|
||||
"orientation": "horizontal",
|
||||
"style": "IPY_MODEL_5da63d520023436aa71101b5561a5744",
|
||||
"style": "IPY_MODEL_e1ef61fb615a41f5b73ee4a19572a3ab",
|
||||
"value": 57562349
|
||||
}
|
||||
},
|
||||
"cc841ac2ac954db78989389970890582": {
|
||||
"951dc9b591f744f1b7275182f5869d17": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "HTMLModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -1301,13 +1311,13 @@
|
||||
"_view_name": "HTMLView",
|
||||
"description": "",
|
||||
"description_tooltip": null,
|
||||
"layout": "IPY_MODEL_3040cd18ddae4853801274c3f10d17b0",
|
||||
"layout": "IPY_MODEL_fef62009c9754424913be4ff0cb2d77b",
|
||||
"placeholder": "",
|
||||
"style": "IPY_MODEL_e533525617774461991000eb56899c0b",
|
||||
"value": " 54.9M/54.9M [00:02<00:00, 19.4MB/s]"
|
||||
"style": "IPY_MODEL_81bf1264af4d4b819a36f1d21cde5afe",
|
||||
"value": " 54.9M/54.9M [00:08<00:00, 6.16MB/s]"
|
||||
}
|
||||
},
|
||||
"bb701d96133442c6b3aa70ddc585d01c": {
|
||||
"a05b7db42e1c4b3db5d908f46a8dbc9a": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_name": "LayoutModel",
|
||||
"model_module_version": "1.2.0",
|
||||
@ -1359,7 +1369,7 @@
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"e38d4376820c40de97d97c78b119cd4f": {
|
||||
"9260115f89f0496d81dabaad29b590e1": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_name": "LayoutModel",
|
||||
"model_module_version": "1.2.0",
|
||||
@ -1411,7 +1421,7 @@
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"59323fae26814e03bad57866d75b76f1": {
|
||||
"61ba6c17718b42a3a79c10eadc8ad430": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "DescriptionStyleModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -1426,7 +1436,7 @@
|
||||
"description_width": ""
|
||||
}
|
||||
},
|
||||
"b5b11bfc014c4a76a421012fb096e8e5": {
|
||||
"55cdbdf3963e40a3b580b4dd4ef8bcbd": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_name": "LayoutModel",
|
||||
"model_module_version": "1.2.0",
|
||||
@ -1478,7 +1488,7 @@
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"5da63d520023436aa71101b5561a5744": {
|
||||
"e1ef61fb615a41f5b73ee4a19572a3ab": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "ProgressStyleModel",
|
||||
"model_module_version": "1.5.0",
|
||||
@ -1494,7 +1504,7 @@
|
||||
"description_width": ""
|
||||
}
|
||||
},
|
||||
"3040cd18ddae4853801274c3f10d17b0": {
|
||||
"fef62009c9754424913be4ff0cb2d77b": {
|
||||
"model_module": "@jupyter-widgets/base",
|
||||
"model_name": "LayoutModel",
|
||||
"model_module_version": "1.2.0",
|
||||
@ -1546,7 +1556,7 @@
|
||||
"width": null
|
||||
}
|
||||
},
|
||||
"e533525617774461991000eb56899c0b": {
|
||||
"81bf1264af4d4b819a36f1d21cde5afe": {
|
||||
"model_module": "@jupyter-widgets/controls",
|
||||
"model_name": "DescriptionStyleModel",
|
||||
"model_module_version": "1.5.0",
|
||||
|
Loading…
Reference in New Issue
Block a user