mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 05:25:01 +03:00
update
This commit is contained in:
parent
9d5c714526
commit
c01b7331b5
280
demo/MMVCServerSIO.py
Executable file
280
demo/MMVCServerSIO.py
Executable file
@ -0,0 +1,280 @@
|
|||||||
|
import sys, os, struct, argparse, logging, shutil, base64, traceback
|
||||||
|
sys.path.append("/MMVC_Trainer")
|
||||||
|
sys.path.append("/MMVC_Trainer/text")
|
||||||
|
|
||||||
|
import uvicorn
|
||||||
|
from fastapi import FastAPI, UploadFile, File, Form
|
||||||
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
|
from fastapi.responses import JSONResponse
|
||||||
|
from fastapi.encoders import jsonable_encoder
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
from scipy.io.wavfile import write, read
|
||||||
|
|
||||||
|
import socketio
|
||||||
|
from distutils.util import strtobool
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from mods.ssl import create_self_signed_cert
|
||||||
|
from mods.VoiceChanger import VoiceChanger
|
||||||
|
|
||||||
|
class UvicornSuppressFilter(logging.Filter):
|
||||||
|
def filter(self, record):
|
||||||
|
return False
|
||||||
|
|
||||||
|
logger = logging.getLogger("uvicorn.error")
|
||||||
|
logger.addFilter(UvicornSuppressFilter())
|
||||||
|
# logger.propagate = False
|
||||||
|
logger = logging.getLogger("multipart.multipart")
|
||||||
|
logger.propagate = False
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class VoiceModel(BaseModel):
|
||||||
|
gpu: int
|
||||||
|
srcId: int
|
||||||
|
dstId: int
|
||||||
|
timestamp: int
|
||||||
|
buffer: str
|
||||||
|
|
||||||
|
|
||||||
|
class MyCustomNamespace(socketio.AsyncNamespace):
|
||||||
|
def __init__(self, namespace):
|
||||||
|
super().__init__(namespace)
|
||||||
|
|
||||||
|
def loadModel(self, config, model):
|
||||||
|
if hasattr(self, 'voiceChanger') == True:
|
||||||
|
self.voiceChanger.destroy()
|
||||||
|
self.voiceChanger = VoiceChanger(config, model)
|
||||||
|
|
||||||
|
def changeVoice(self, gpu, srcId, dstId, timestamp, unpackedData):
|
||||||
|
return self.voiceChanger.on_request(gpu, srcId, dstId, timestamp, unpackedData)
|
||||||
|
|
||||||
|
def on_connect(self, sid, environ):
|
||||||
|
# print('[{}] connet sid : {}'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S') , sid))
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def on_request_message(self, sid, msg):
|
||||||
|
# print("on_request_message", torch.cuda.memory_allocated())
|
||||||
|
gpu = int(msg[0])
|
||||||
|
srcId = int(msg[1])
|
||||||
|
dstId = int(msg[2])
|
||||||
|
timestamp = int(msg[3])
|
||||||
|
data = msg[4]
|
||||||
|
# print(srcId, dstId, timestamp)
|
||||||
|
unpackedData = np.array(struct.unpack('<%sh'%(len(data) // struct.calcsize('<h') ), data))
|
||||||
|
audio1 = self.changeVoice(gpu, srcId, dstId, timestamp, unpackedData)
|
||||||
|
|
||||||
|
bin = struct.pack('<%sh'%len(audio1), *audio1)
|
||||||
|
|
||||||
|
await self.emit('response',[timestamp, bin])
|
||||||
|
|
||||||
|
def on_disconnect(self, sid):
|
||||||
|
# print('[{}] disconnect'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S')))
|
||||||
|
pass;
|
||||||
|
|
||||||
|
|
||||||
|
def setupArgParser():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("-p", type=int, default=8080, help="port")
|
||||||
|
parser.add_argument("-c", type=str, help="path for the config.json")
|
||||||
|
parser.add_argument("-m", type=str, help="path for the model file")
|
||||||
|
parser.add_argument("--https", type=strtobool, default=False, help="use https")
|
||||||
|
parser.add_argument("--httpsKey", type=str, default="ssl.key", help="path for the key of https")
|
||||||
|
parser.add_argument("--httpsCert", type=str, default="ssl.cert", help="path for the cert of https")
|
||||||
|
parser.add_argument("--httpsSelfSigned", type=strtobool, default=True, help="generate self-signed certificate")
|
||||||
|
return parser
|
||||||
|
|
||||||
|
def printMessage(message, level=0):
|
||||||
|
if level == 0:
|
||||||
|
print(f"\033[17m{message}\033[0m")
|
||||||
|
elif level == 1:
|
||||||
|
print(f"\033[34m {message}\033[0m")
|
||||||
|
elif level == 2:
|
||||||
|
print(f"\033[32m {message}\033[0m")
|
||||||
|
else:
|
||||||
|
print(f"\033[47m {message}\033[0m")
|
||||||
|
|
||||||
|
global app_socketio
|
||||||
|
|
||||||
|
|
||||||
|
printMessage(f"Phase name:{__name__}", level=2)
|
||||||
|
thisFilename = os.path.basename(__file__)[:-3]
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == thisFilename:
|
||||||
|
printMessage(f"PHASE3:{__name__}", level=2)
|
||||||
|
parser = setupArgParser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
PORT = args.p
|
||||||
|
CONFIG = args.c
|
||||||
|
MODEL = args.m
|
||||||
|
|
||||||
|
app_fastapi = FastAPI()
|
||||||
|
sio = socketio.AsyncServer(
|
||||||
|
async_mode='asgi',
|
||||||
|
cors_allowed_origins='*'
|
||||||
|
)
|
||||||
|
namespace = MyCustomNamespace('/test')
|
||||||
|
sio.register_namespace(namespace)
|
||||||
|
if CONFIG and MODEL:
|
||||||
|
namespace.loadModel(CONFIG, MODEL)
|
||||||
|
app_socketio = socketio.ASGIApp(
|
||||||
|
sio,
|
||||||
|
other_asgi_app=app_fastapi,
|
||||||
|
static_files={
|
||||||
|
'': '../frontend/dist',
|
||||||
|
'/': '../frontend/dist/index.html',
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
@app_fastapi.get("/api/hello")
|
||||||
|
async def index():
|
||||||
|
return {"result": "Index"}
|
||||||
|
|
||||||
|
|
||||||
|
@app_fastapi.post("/api/uploadfile/model")
|
||||||
|
async def upload_file(configFile:UploadFile = File(...), modelFile: UploadFile = File(...)):
|
||||||
|
if configFile and modelFile:
|
||||||
|
for file in [modelFile, configFile]:
|
||||||
|
filename = file.filename
|
||||||
|
fileobj = file.file
|
||||||
|
upload_dir = open(os.path.join(".", filename),'wb+')
|
||||||
|
shutil.copyfileobj(fileobj, upload_dir)
|
||||||
|
upload_dir.close()
|
||||||
|
namespace.loadModel(configFile.filename, modelFile.filename)
|
||||||
|
return {"uploaded files": f"{configFile.filename}, {modelFile.filename} "}
|
||||||
|
return {"Error": "uploaded file is not found."}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@app_fastapi.post("/test")
|
||||||
|
async def post_test(voice:VoiceModel):
|
||||||
|
try:
|
||||||
|
# print("POST REQUEST PROCESSING....")
|
||||||
|
gpu = voice.gpu
|
||||||
|
srcId = voice.srcId
|
||||||
|
dstId = voice.dstId
|
||||||
|
timestamp = voice.timestamp
|
||||||
|
buffer = voice.buffer
|
||||||
|
wav = base64.b64decode(buffer)
|
||||||
|
|
||||||
|
if wav==0:
|
||||||
|
samplerate, data=read("dummy.wav")
|
||||||
|
unpackedData = data
|
||||||
|
else:
|
||||||
|
unpackedData = np.array(struct.unpack('<%sh'%(len(wav) // struct.calcsize('<h') ), wav))
|
||||||
|
write("logs/received_data.wav", 24000, unpackedData.astype(np.int16))
|
||||||
|
|
||||||
|
changedVoice = namespace.changeVoice(gpu, srcId, dstId, timestamp, unpackedData)
|
||||||
|
changedVoiceBase64 = base64.b64encode(changedVoice).decode('utf-8')
|
||||||
|
|
||||||
|
data = {
|
||||||
|
"gpu":gpu,
|
||||||
|
"srcId":srcId,
|
||||||
|
"dstId":dstId,
|
||||||
|
"timestamp":timestamp,
|
||||||
|
"changedVoiceBase64":changedVoiceBase64
|
||||||
|
}
|
||||||
|
|
||||||
|
json_compatible_item_data = jsonable_encoder(data)
|
||||||
|
|
||||||
|
return JSONResponse(content=json_compatible_item_data)
|
||||||
|
except Exception as e:
|
||||||
|
print("REQUEST PROCESSING!!!! EXCEPTION!!!", e)
|
||||||
|
print(traceback.format_exc())
|
||||||
|
return str(e)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__mp_main__':
|
||||||
|
printMessage(f"PHASE2:{__name__}", level=2)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
printMessage(f"PHASE1:{__name__}", level=2)
|
||||||
|
|
||||||
|
parser = setupArgParser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
PORT = args.p
|
||||||
|
CONFIG = args.c
|
||||||
|
MODEL = args.m
|
||||||
|
|
||||||
|
printMessage(f"Start MMVC SocketIO Server", level=0)
|
||||||
|
printMessage(f"CONFIG:{CONFIG}, MODEL:{MODEL}", level=1)
|
||||||
|
|
||||||
|
if os.environ["EX_PORT"]:
|
||||||
|
EX_PORT = os.environ["EX_PORT"]
|
||||||
|
printMessage(f"External_Port:{EX_PORT} Internal_Port:{PORT}", level=1)
|
||||||
|
else:
|
||||||
|
printMessage(f"Internal_Port:{PORT}", level=1)
|
||||||
|
|
||||||
|
if os.environ["EX_IP"]:
|
||||||
|
EX_IP = os.environ["EX_IP"]
|
||||||
|
printMessage(f"External_IP:{EX_IP}", level=1)
|
||||||
|
|
||||||
|
# HTTPS key/cert作成
|
||||||
|
if args.https and args.httpsSelfSigned == 1:
|
||||||
|
# HTTPS(おれおれ証明書生成)
|
||||||
|
os.makedirs("./key", exist_ok=True)
|
||||||
|
key_base_name = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
||||||
|
keyname = f"{key_base_name}.key"
|
||||||
|
certname = f"{key_base_name}.cert"
|
||||||
|
create_self_signed_cert(certname, keyname, certargs=
|
||||||
|
{"Country": "JP",
|
||||||
|
"State": "Tokyo",
|
||||||
|
"City": "Chuo-ku",
|
||||||
|
"Organization": "F",
|
||||||
|
"Org. Unit": "F"}, cert_dir="./key")
|
||||||
|
key_path = os.path.join("./key", keyname)
|
||||||
|
cert_path = os.path.join("./key", certname)
|
||||||
|
printMessage(f"protocol: HTTPS(self-signed), key:{key_path}, cert:{cert_path}", level=1)
|
||||||
|
elif args.https and args.httpsSelfSigned == 0:
|
||||||
|
# HTTPS
|
||||||
|
key_path = args.httpsKey
|
||||||
|
cert_path = args.httpsCert
|
||||||
|
printMessage(f"protocol: HTTPS, key:{key_path}, cert:{cert_path}", level=1)
|
||||||
|
else:
|
||||||
|
# HTTP
|
||||||
|
printMessage(f"protocol: HTTP", level=1)
|
||||||
|
|
||||||
|
# アドレス表示
|
||||||
|
if args.https == 1:
|
||||||
|
printMessage(f"open https://<IP>:<PORT>/ with your browser.", level=0)
|
||||||
|
else:
|
||||||
|
printMessage(f"open http://<IP>:<PORT>/ with your browser.", level=0)
|
||||||
|
|
||||||
|
if EX_PORT and EX_IP and args.https == 1:
|
||||||
|
printMessage(f"In many cases it is one of the following", level=1)
|
||||||
|
printMessage(f"https://localhost:{EX_PORT}/", level=1)
|
||||||
|
for ip in EX_IP.strip().split(" "):
|
||||||
|
printMessage(f"https://{ip}:{EX_PORT}/", level=1)
|
||||||
|
elif EX_PORT and EX_IP and args.https == 0:
|
||||||
|
printMessage(f"In many cases it is one of the following", level=1)
|
||||||
|
printMessage(f"http://localhost:{EX_PORT}/", level=1)
|
||||||
|
|
||||||
|
|
||||||
|
# サーバ起動
|
||||||
|
if args.https:
|
||||||
|
# HTTPS サーバ起動
|
||||||
|
uvicorn.run(
|
||||||
|
f"{os.path.basename(__file__)[:-3]}:app_socketio",
|
||||||
|
host="0.0.0.0",
|
||||||
|
port=int(PORT),
|
||||||
|
reload=True,
|
||||||
|
ssl_keyfile = key_path,
|
||||||
|
ssl_certfile = cert_path,
|
||||||
|
log_level="critical"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# HTTP サーバ起動
|
||||||
|
uvicorn.run(
|
||||||
|
f"{os.path.basename(__file__)[:-3]}:app_socketio",
|
||||||
|
host="0.0.0.0",
|
||||||
|
port=int(PORT),
|
||||||
|
reload=True,
|
||||||
|
log_level="critical"
|
||||||
|
)
|
||||||
|
|
76
demo/mods/VoiceChanger.py
Executable file
76
demo/mods/VoiceChanger.py
Executable file
@ -0,0 +1,76 @@
|
|||||||
|
import torch
|
||||||
|
from scipy.io.wavfile import write, read
|
||||||
|
import numpy as np
|
||||||
|
import struct, traceback
|
||||||
|
|
||||||
|
import utils
|
||||||
|
import commons
|
||||||
|
from models import SynthesizerTrn
|
||||||
|
from text.symbols import symbols
|
||||||
|
from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
||||||
|
from mel_processing import spectrogram_torch
|
||||||
|
from text import text_to_sequence, cleaned_text_to_sequence
|
||||||
|
|
||||||
|
|
||||||
|
class VoiceChanger():
|
||||||
|
def __init__(self, config, model):
|
||||||
|
self.hps = utils.get_hparams_from_file(config)
|
||||||
|
self.net_g = SynthesizerTrn(
|
||||||
|
len(symbols),
|
||||||
|
self.hps.data.filter_length // 2 + 1,
|
||||||
|
self.hps.train.segment_size // self.hps.data.hop_length,
|
||||||
|
n_speakers=self.hps.data.n_speakers,
|
||||||
|
**self.hps.model)
|
||||||
|
self.net_g.eval()
|
||||||
|
self.gpu_num = torch.cuda.device_count()
|
||||||
|
utils.load_checkpoint( model, self.net_g, None)
|
||||||
|
print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num})")
|
||||||
|
|
||||||
|
def destroy(self):
|
||||||
|
del self.net_g
|
||||||
|
|
||||||
|
def on_request(self, gpu, srcId, dstId, timestamp, wav):
|
||||||
|
# if wav==0:
|
||||||
|
# samplerate, data=read("dummy.wav")
|
||||||
|
# unpackedData = data
|
||||||
|
# else:
|
||||||
|
# unpackedData = np.array(struct.unpack('<%sh'%(len(wav) // struct.calcsize('<h') ), wav))
|
||||||
|
# write("logs/received_data.wav", 24000, unpackedData.astype(np.int16))
|
||||||
|
|
||||||
|
unpackedData = wav
|
||||||
|
|
||||||
|
try:
|
||||||
|
|
||||||
|
text_norm = text_to_sequence("a", self.hps.data.text_cleaners)
|
||||||
|
text_norm = commons.intersperse(text_norm, 0)
|
||||||
|
text_norm = torch.LongTensor(text_norm)
|
||||||
|
|
||||||
|
audio = torch.FloatTensor(unpackedData.astype(np.float32))
|
||||||
|
audio_norm = audio /self.hps.data.max_wav_value
|
||||||
|
audio_norm = audio_norm.unsqueeze(0)
|
||||||
|
|
||||||
|
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
|
||||||
|
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
||||||
|
center=False)
|
||||||
|
spec = torch.squeeze(spec, 0)
|
||||||
|
sid = torch.LongTensor([int(srcId)])
|
||||||
|
|
||||||
|
data = (text_norm, spec, audio_norm, sid)
|
||||||
|
data = TextAudioSpeakerCollate()([data])
|
||||||
|
|
||||||
|
if gpu<0 or self.gpu_num==0 :
|
||||||
|
with torch.no_grad():
|
||||||
|
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cpu() for x in data]
|
||||||
|
sid_tgt1 = torch.LongTensor([dstId]).cpu()
|
||||||
|
audio1 = (self.net_g.cpu().voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy()
|
||||||
|
else:
|
||||||
|
with torch.no_grad():
|
||||||
|
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda(gpu) for x in data]
|
||||||
|
sid_tgt1 = torch.LongTensor([dstId]).cuda(gpu)
|
||||||
|
audio1 = (self.net_g.cuda(gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy()
|
||||||
|
except Exception as e:
|
||||||
|
print("VC PROCESSING!!!! EXCEPTION!!!", e)
|
||||||
|
print(traceback.format_exc())
|
||||||
|
|
||||||
|
audio1 = audio1.astype(np.int16)
|
||||||
|
return audio1
|
24
demo/mods/ssl.py
Executable file
24
demo/mods/ssl.py
Executable file
@ -0,0 +1,24 @@
|
|||||||
|
import os
|
||||||
|
from OpenSSL import crypto
|
||||||
|
|
||||||
|
def create_self_signed_cert(certfile, keyfile, certargs, cert_dir="."):
|
||||||
|
C_F = os.path.join(cert_dir, certfile)
|
||||||
|
K_F = os.path.join(cert_dir, keyfile)
|
||||||
|
if not os.path.exists(C_F) or not os.path.exists(K_F):
|
||||||
|
k = crypto.PKey()
|
||||||
|
k.generate_key(crypto.TYPE_RSA, 2048)
|
||||||
|
cert = crypto.X509()
|
||||||
|
cert.get_subject().C = certargs["Country"]
|
||||||
|
cert.get_subject().ST = certargs["State"]
|
||||||
|
cert.get_subject().L = certargs["City"]
|
||||||
|
cert.get_subject().O = certargs["Organization"]
|
||||||
|
cert.get_subject().OU = certargs["Org. Unit"]
|
||||||
|
cert.get_subject().CN = 'Example'
|
||||||
|
cert.set_serial_number(1000)
|
||||||
|
cert.gmtime_adj_notBefore(0)
|
||||||
|
cert.gmtime_adj_notAfter(315360000)
|
||||||
|
cert.set_issuer(cert.get_subject())
|
||||||
|
cert.set_pubkey(k)
|
||||||
|
cert.sign(k, 'sha1')
|
||||||
|
open(C_F, "wb").write(crypto.dump_certificate(crypto.FILETYPE_PEM, cert))
|
||||||
|
open(K_F, "wb").write(crypto.dump_privatekey(crypto.FILETYPE_PEM, k))
|
@ -22,7 +22,12 @@ from mel_processing import spectrogram_torch
|
|||||||
from text import text_to_sequence, cleaned_text_to_sequence
|
from text import text_to_sequence, cleaned_text_to_sequence
|
||||||
|
|
||||||
class MyCustomNamespace(socketio.Namespace):
|
class MyCustomNamespace(socketio.Namespace):
|
||||||
def __init__(self, namespace, config, model):
|
def __init__(self, namespace):
|
||||||
|
super().__init__(namespace)
|
||||||
|
self.gpu_num = torch.cuda.device_count()
|
||||||
|
print("GPU_NUM:",self.gpu_num)
|
||||||
|
|
||||||
|
def __init__old(self, namespace, config, model):
|
||||||
super().__init__(namespace)
|
super().__init__(namespace)
|
||||||
self.hps =utils.get_hparams_from_file(config)
|
self.hps =utils.get_hparams_from_file(config)
|
||||||
self.net_g = SynthesizerTrn(
|
self.net_g = SynthesizerTrn(
|
||||||
@ -36,12 +41,37 @@ class MyCustomNamespace(socketio.Namespace):
|
|||||||
print("GPU_NUM:",self.gpu_num)
|
print("GPU_NUM:",self.gpu_num)
|
||||||
utils.load_checkpoint( model, self.net_g, None)
|
utils.load_checkpoint( model, self.net_g, None)
|
||||||
|
|
||||||
|
def loadModel(self, config, model):
|
||||||
|
self.hps =utils.get_hparams_from_file(config)
|
||||||
|
print("before DELETE:", torch.cuda.memory_allocated())
|
||||||
|
if hasattr(self, 'net_g') == True:
|
||||||
|
print("DELETE MODEL:", torch.cuda.memory_allocated())
|
||||||
|
del self.net_g
|
||||||
|
print("before load", torch.cuda.memory_allocated())
|
||||||
|
self.net_g = SynthesizerTrn(
|
||||||
|
len(symbols),
|
||||||
|
self.hps.data.filter_length // 2 + 1,
|
||||||
|
self.hps.train.segment_size // self.hps.data.hop_length,
|
||||||
|
n_speakers=self.hps.data.n_speakers,
|
||||||
|
**self.hps.model)
|
||||||
|
self.net_g.eval()
|
||||||
|
utils.load_checkpoint( model, self.net_g, None)
|
||||||
|
print(torch.cuda.memory_allocated())
|
||||||
|
print("after load", torch.cuda.memory_allocated())
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def on_connect(self, sid, environ):
|
def on_connect(self, sid, environ):
|
||||||
print('[{}] connet sid : {}'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S') , sid))
|
print('[{}] connet sid : {}'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S') , sid))
|
||||||
# print('[{}] connet env : {}'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S') , environ))
|
# print('[{}] connet env : {}'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S') , environ))
|
||||||
|
|
||||||
|
def on_load_model(self, sid, msg):
|
||||||
|
print("on_load_model")
|
||||||
|
print(msg)
|
||||||
|
pass
|
||||||
|
|
||||||
def on_request_message(self, sid, msg):
|
def on_request_message(self, sid, msg):
|
||||||
# print("MESSGaa", msg)
|
print("on_request_message", torch.cuda.memory_allocated())
|
||||||
gpu = int(msg[0])
|
gpu = int(msg[0])
|
||||||
srcId = int(msg[1])
|
srcId = int(msg[1])
|
||||||
dstId = int(msg[2])
|
dstId = int(msg[2])
|
||||||
@ -223,7 +253,17 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
# SocketIOセットアップ
|
# SocketIOセットアップ
|
||||||
sio = socketio.Server(cors_allowed_origins='*')
|
sio = socketio.Server(cors_allowed_origins='*')
|
||||||
sio.register_namespace(MyCustomNamespace('/test', CONFIG, MODEL))
|
namespace = MyCustomNamespace('/test')
|
||||||
|
sio.register_namespace(namespace)
|
||||||
|
print("loadmodel1:")
|
||||||
|
namespace.loadModel(CONFIG, MODEL)
|
||||||
|
print("loadmodel2:")
|
||||||
|
namespace.loadModel(CONFIG, MODEL)
|
||||||
|
print("loadmodel3:")
|
||||||
|
namespace.loadModel(CONFIG, MODEL)
|
||||||
|
print("loadmodel4:")
|
||||||
|
namespace.loadModel(CONFIG, MODEL)
|
||||||
|
print("loadmodel5:")
|
||||||
app = socketio.WSGIApp(sio,static_files={
|
app = socketio.WSGIApp(sio,static_files={
|
||||||
'': '../frontend/dist',
|
'': '../frontend/dist',
|
||||||
'/': '../frontend/dist/index.html',
|
'/': '../frontend/dist/index.html',
|
||||||
|
@ -11,33 +11,18 @@ echo $PARAMS
|
|||||||
if [[ -e ./setting.json ]]; then
|
if [[ -e ./setting.json ]]; then
|
||||||
echo "カスタムセッティングを使用"
|
echo "カスタムセッティングを使用"
|
||||||
cp ./setting.json ../frontend/dist/assets/setting.json
|
cp ./setting.json ../frontend/dist/assets/setting.json
|
||||||
else
|
|
||||||
if [ "${TYPE}" = "SOFT_VC" ] ; then
|
|
||||||
cp ../frontend/dist/assets/setting_softvc.json ../frontend/dist/assets/setting.json
|
|
||||||
elif [ "${TYPE}" = "SOFT_VC_FAST_API" ] ; then
|
|
||||||
cp ../frontend/dist/assets/setting_softvc_colab.json ../frontend/dist/assets/setting.json
|
|
||||||
else
|
else
|
||||||
cp ../frontend/dist/assets/setting_mmvc.json ../frontend/dist/assets/setting.json
|
cp ../frontend/dist/assets/setting_mmvc.json ../frontend/dist/assets/setting.json
|
||||||
fi
|
fi
|
||||||
fi
|
|
||||||
|
|
||||||
|
|
||||||
# 起動
|
# 起動
|
||||||
if [ "${TYPE}" = "SOFT_VC" ] ; then
|
if [ "${TYPE}" = "MMVC" ] ; then
|
||||||
echo "SOFT_VCを起動します"
|
|
||||||
python3 SoftVcServerSIO.py $PARAMS 2>stderr.txt
|
|
||||||
elif [ "${TYPE}" = "SOFT_VC_VERBOSE" ] ; then
|
|
||||||
echo "SOFT_VCを起動します(verbose)"
|
|
||||||
python3 SoftVcServerSIO.py $PARAMS
|
|
||||||
elif [ "${TYPE}" = "SOFT_VC_FAST_API" ] ; then
|
|
||||||
echo "SOFT_VC_FAST_APIを起動します"
|
|
||||||
python3 SoftVcServerFastAPI.py 8080 docker
|
|
||||||
elif [ "${TYPE}" = "MMVC" ] ; then
|
|
||||||
echo "MMVCを起動します"
|
echo "MMVCを起動します"
|
||||||
python3 serverSIO.py $PARAMS 2>stderr.txt
|
python3 MMVCServerSIO.py $PARAMS 2>stderr.txt
|
||||||
elif [ "${TYPE}" = "MMVC_VERBOSE" ] ; then
|
elif [ "${TYPE}" = "MMVC_VERBOSE" ] ; then
|
||||||
echo "MMVCを起動します(verbose)"
|
echo "MMVCを起動します(verbose)"
|
||||||
python3 serverSIO.py $PARAMS
|
python3 MMVCServerSIO.py $PARAMS
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
2
frontend/dist/index.js
vendored
2
frontend/dist/index.js
vendored
File diff suppressed because one or more lines are too long
@ -1,7 +1,7 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
set -eu
|
set -eu
|
||||||
|
|
||||||
DOCKER_IMAGE=dannadori/voice-changer:20221028_220714
|
DOCKER_IMAGE=dannadori/voice-changer:20221029_233016
|
||||||
#DOCKER_IMAGE=voice-changer
|
#DOCKER_IMAGE=voice-changer
|
||||||
|
|
||||||
|
|
||||||
|
314
start_v0.1.sh
Normal file
314
start_v0.1.sh
Normal file
@ -0,0 +1,314 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
set -eu
|
||||||
|
|
||||||
|
DOCKER_IMAGE=dannadori/voice-changer:20221028_220714
|
||||||
|
#DOCKER_IMAGE=voice-changer
|
||||||
|
|
||||||
|
|
||||||
|
MODE=$1
|
||||||
|
PARAMS=${@:2:($#-1)}
|
||||||
|
|
||||||
|
### DEFAULT VAR ###
|
||||||
|
DEFAULT_EX_PORT=18888
|
||||||
|
DEFAULT_USE_GPU=on # on|off
|
||||||
|
DEFAULT_VERBOSE=off # on|off
|
||||||
|
|
||||||
|
### ENV VAR ###
|
||||||
|
EX_PORT=${EX_PORT:-${DEFAULT_EX_PORT}}
|
||||||
|
USE_GPU=${USE_GPU:-${DEFAULT_USE_GPU}}
|
||||||
|
VERBOSE=${VERBOSE:-${DEFAULT_VERBOSE}}
|
||||||
|
|
||||||
|
#echo $EX_PORT $USE_GPU $VERBOSE
|
||||||
|
|
||||||
|
### INTERNAL SETTING ###
|
||||||
|
TENSORBOARD_PORT=6006
|
||||||
|
SIO_PORT=8080
|
||||||
|
|
||||||
|
|
||||||
|
###
|
||||||
|
if [ "${MODE}" = "MMVC_TRAIN" ]; then
|
||||||
|
echo "トレーニングを開始します"
|
||||||
|
|
||||||
|
docker run -it --gpus all --shm-size=128M \
|
||||||
|
-v `pwd`/exp/${name}/dataset:/MMVC_Trainer/dataset \
|
||||||
|
-v `pwd`/exp/${name}/logs:/MMVC_Trainer/logs \
|
||||||
|
-v `pwd`/exp/${name}/filelists:/MMVC_Trainer/filelists \
|
||||||
|
-v `pwd`/vc_resources:/resources \
|
||||||
|
-e LOCAL_UID=$(id -u $USER) \
|
||||||
|
-e LOCAL_GID=$(id -g $USER) \
|
||||||
|
-e EX_IP="`hostname -I`" \
|
||||||
|
-e EX_PORT=${EX_PORT} \
|
||||||
|
-e VERBOSE=${VERBOSE} \
|
||||||
|
-p ${EX_PORT}:6006 $DOCKER_IMAGE "$@"
|
||||||
|
|
||||||
|
elif [ "${MODE}" = "MMVC" ]; then
|
||||||
|
if [ "${USE_GPU}" = "on" ]; then
|
||||||
|
echo "MMVCを起動します(with gpu)"
|
||||||
|
|
||||||
|
docker run -it --gpus all --shm-size=128M \
|
||||||
|
-v `pwd`/vc_resources:/resources \
|
||||||
|
-e LOCAL_UID=$(id -u $USER) \
|
||||||
|
-e LOCAL_GID=$(id -g $USER) \
|
||||||
|
-e EX_IP="`hostname -I`" \
|
||||||
|
-e EX_PORT=${EX_PORT} \
|
||||||
|
-e VERBOSE=${VERBOSE} \
|
||||||
|
-p ${EX_PORT}:8080 $DOCKER_IMAGE "$@"
|
||||||
|
else
|
||||||
|
echo "MMVCを起動します(only cpu)"
|
||||||
|
docker run -it --shm-size=128M \
|
||||||
|
-v `pwd`/vc_resources:/resources \
|
||||||
|
-e LOCAL_UID=$(id -u $USER) \
|
||||||
|
-e LOCAL_GID=$(id -g $USER) \
|
||||||
|
-e EX_IP="`hostname -I`" \
|
||||||
|
-e EX_PORT=${EX_PORT} \
|
||||||
|
-e VERBOSE=${VERBOSE} \
|
||||||
|
-p ${EX_PORT}:8080 $DOCKER_IMAGE "$@"
|
||||||
|
|
||||||
|
# docker run -it --shm-size=128M \
|
||||||
|
# -v `pwd`/vc_resources:/resources \
|
||||||
|
# -e LOCAL_UID=$(id -u $USER) \
|
||||||
|
# -e LOCAL_GID=$(id -g $USER) \
|
||||||
|
# -e EX_IP="`hostname -I`" \
|
||||||
|
# -e EX_PORT=${EX_PORT} \
|
||||||
|
# -e VERBOSE=${VERBOSE} \
|
||||||
|
# --entrypoint="" \
|
||||||
|
# -p ${EX_PORT}:8080 $DOCKER_IMAGE /bin/bash
|
||||||
|
|
||||||
|
fi
|
||||||
|
|
||||||
|
elif [ "${MODE}" = "SOFT_VC" ]; then
|
||||||
|
if [ "${USE_GPU}" = "on" ]; then
|
||||||
|
echo "Start Soft-vc"
|
||||||
|
|
||||||
|
docker run -it --gpus all --shm-size=128M \
|
||||||
|
-v `pwd`/vc_resources:/resources \
|
||||||
|
-e LOCAL_UID=$(id -u $USER) \
|
||||||
|
-e LOCAL_GID=$(id -g $USER) \
|
||||||
|
-e EX_IP="`hostname -I`" \
|
||||||
|
-e EX_PORT=${EX_PORT} \
|
||||||
|
-e VERBOSE=${VERBOSE} \
|
||||||
|
-p ${EX_PORT}:8080 $DOCKER_IMAGE "$@"
|
||||||
|
else
|
||||||
|
echo "Start Soft-vc withou GPU is not supported"
|
||||||
|
fi
|
||||||
|
|
||||||
|
else
|
||||||
|
echo "
|
||||||
|
usage:
|
||||||
|
$0 <MODE> <params...>
|
||||||
|
MODE: select one of ['MMVC_TRAIN', 'MMVC', 'SOFT_VC']
|
||||||
|
" >&2
|
||||||
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# echo $EX_PORT
|
||||||
|
|
||||||
|
|
||||||
|
# echo "------"
|
||||||
|
# echo "$@"
|
||||||
|
# echo "------"
|
||||||
|
|
||||||
|
# # usage() {
|
||||||
|
# # echo "
|
||||||
|
# # usage:
|
||||||
|
# # For training
|
||||||
|
# # $0 [-t] -n <exp_name> [-b batch_size] [-r]
|
||||||
|
# # -t: トレーニングモードで実行する場合に指定してください。(train)
|
||||||
|
# # -n: トレーニングの名前です。(name)
|
||||||
|
# # -b: バッチサイズです。(batchsize)
|
||||||
|
# # -r: トレーニング再開の場合に指定してください。(resume)
|
||||||
|
# # For changing voice
|
||||||
|
# # $0 [-v] [-c config] [-m model] [-g on/off]
|
||||||
|
# # -v: ボイスチェンジャーモードで実行する場合に指定してください。(voice changer)
|
||||||
|
# # -c: トレーニングで使用したConfigのファイル名です。(config)
|
||||||
|
# # -m: トレーニング済みのモデルのファイル名です。(model)
|
||||||
|
# # -g: GPU使用/不使用。デフォルトはonなのでGPUを使う場合は指定不要。(gpu)
|
||||||
|
# # -p: port番号
|
||||||
|
# # For help
|
||||||
|
# # $0 [-h]
|
||||||
|
# # -h: show this help
|
||||||
|
# # " >&2
|
||||||
|
# # }
|
||||||
|
# # warn () {
|
||||||
|
# # echo "! ! ! $1 ! ! !"
|
||||||
|
# # exit 1
|
||||||
|
# # }
|
||||||
|
|
||||||
|
|
||||||
|
# # training_flag=false
|
||||||
|
# # name=999_exp
|
||||||
|
# # batch_size=10
|
||||||
|
# # resume_flag=false
|
||||||
|
|
||||||
|
# # voice_change_flag=false
|
||||||
|
# # config=
|
||||||
|
# # model=
|
||||||
|
# # gpu=on
|
||||||
|
# # port=8080
|
||||||
|
# # escape_flag=false
|
||||||
|
|
||||||
|
# # # オプション解析
|
||||||
|
# # while getopts tn:b:rvc:m:g:p:hx OPT; do
|
||||||
|
# # case $OPT in
|
||||||
|
# # t)
|
||||||
|
# # training_flag=true
|
||||||
|
# # ;;
|
||||||
|
# # n)
|
||||||
|
# # name="$OPTARG"
|
||||||
|
# # ;;
|
||||||
|
# # b)
|
||||||
|
# # batch_size="$OPTARG"
|
||||||
|
# # ;;
|
||||||
|
# # r)
|
||||||
|
# # resume_flag=true
|
||||||
|
# # ;;
|
||||||
|
# # v)
|
||||||
|
# # voice_change_flag=true
|
||||||
|
# # ;;
|
||||||
|
# # c)
|
||||||
|
# # config="$OPTARG"
|
||||||
|
# # ;;
|
||||||
|
# # m)
|
||||||
|
# # model="$OPTARG"
|
||||||
|
# # ;;
|
||||||
|
# # g)
|
||||||
|
# # gpu="$OPTARG"
|
||||||
|
# # ;;
|
||||||
|
# # p)
|
||||||
|
# # port="$OPTARG"
|
||||||
|
# # ;;
|
||||||
|
# # h | \?)
|
||||||
|
# # usage && exit 1
|
||||||
|
# # ;;
|
||||||
|
# # x)
|
||||||
|
# # escape_flag=true
|
||||||
|
# # esac
|
||||||
|
# # done
|
||||||
|
|
||||||
|
|
||||||
|
# # # モード解析
|
||||||
|
# # if $training_flag && $voice_change_flag; then
|
||||||
|
# # warn "-t(トレーニングモード) と -v(ボイチェンモード)は同時に指定できません。"
|
||||||
|
# # elif $training_flag; then
|
||||||
|
# # echo "■■■ ト レ ー ニ ン グ モ ー ド ■■■"
|
||||||
|
# # elif $voice_change_flag; then
|
||||||
|
# # echo "■■■ ボ イ チ ェ ン モ ー ド ■■■"
|
||||||
|
# # elif $escape_flag; then
|
||||||
|
# # /bin/bash
|
||||||
|
# # else
|
||||||
|
# # warn "-t(トレーニングモード) と -v(ボイチェンモード)のいずれかを指定してください。"
|
||||||
|
# # fi
|
||||||
|
|
||||||
|
# if [ "${MODE}" = "MMVC_TRAIN_INITIAL" ]; then
|
||||||
|
# echo "トレーニングを開始します"
|
||||||
|
# elif [ "${MODE}" = "MMVC" ]; then
|
||||||
|
# echo "MMVCを起動します"
|
||||||
|
|
||||||
|
# docker run -it --gpus all --shm-size=128M \
|
||||||
|
# -v `pwd`/vc_resources:/resources \
|
||||||
|
# -e LOCAL_UID=$(id -u $USER) \
|
||||||
|
# -e LOCAL_GID=$(id -g $USER) \
|
||||||
|
# -e EX_IP="`hostname -I`" \
|
||||||
|
# -e EX_PORT=${port} \
|
||||||
|
# -p ${port}:8080 $DOCKER_IMAGE -v -c ${config} -m ${model}
|
||||||
|
|
||||||
|
# elif [ "${MODE}" = "MMVC_VERBOSE" ]; then
|
||||||
|
# echo "MMVCを起動します(verbose)"
|
||||||
|
# elif [ "${MODE}" = "MMVC_CPU" ]; then
|
||||||
|
# echo "MMVCを起動します(CPU)"
|
||||||
|
# elif [ "${MODE}" = "MMVC_CPU_VERBOSE" ]; then
|
||||||
|
# echo "MMVCを起動します(CPU)(verbose)"
|
||||||
|
# elif [ "${MODE}" = "SOFT_VC" ]; then
|
||||||
|
# echo "Start Soft-vc"
|
||||||
|
# elif [ "${MODE}" = "SOFT_VC_VERBOSE" ]; then
|
||||||
|
# echo "Start Soft-vc(verbose)"
|
||||||
|
# else
|
||||||
|
# echo "
|
||||||
|
# usage:
|
||||||
|
# $0 <MODE> <params...>
|
||||||
|
# EX_PORT:
|
||||||
|
# MODE: one of ['MMVC_TRAIN', 'MMVC', 'SOFT_VC']
|
||||||
|
|
||||||
|
# For 'MMVC_TRAIN':
|
||||||
|
# $0 MMVC_TRAIN_INITIAL -n <exp_name> [-b batch_size] [-r]
|
||||||
|
# -n: トレーニングの名前です。(name)
|
||||||
|
# -b: バッチサイズです。(batchsize)
|
||||||
|
# -r: トレーニング再開の場合に指定してください。(resume)
|
||||||
|
# For 'MMVC'
|
||||||
|
# $0 MMVC [-c config] [-m model] [-g on/off] [-p port] [-v]
|
||||||
|
# -c: トレーニングで使用したConfigのファイル名です。(config)
|
||||||
|
# -m: トレーニング済みのモデルのファイル名です。(model)
|
||||||
|
# -g: GPU使用/不使用。デフォルトはonなのでGPUを使う場合は指定不要。(gpu)
|
||||||
|
# -p: Docker からExposeするport番号
|
||||||
|
# -v: verbose
|
||||||
|
# For 'SOFT_VC'
|
||||||
|
# $0 SOFT_VC [-c config] [-m model] [-g on/off]
|
||||||
|
# -p: port exposed from docker container.
|
||||||
|
# -v: verbose
|
||||||
|
# " >&2
|
||||||
|
# fi
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# # if $training_flag; then
|
||||||
|
# # if $resume_flag; then
|
||||||
|
# # echo "トレーニングを再開します"
|
||||||
|
# # docker run -it --gpus all --shm-size=128M \
|
||||||
|
# # -v `pwd`/exp/${name}/dataset:/MMVC_Trainer/dataset \
|
||||||
|
# # -v `pwd`/exp/${name}/logs:/MMVC_Trainer/logs \
|
||||||
|
# # -v `pwd`/exp/${name}/filelists:/MMVC_Trainer/filelists \
|
||||||
|
# # -v `pwd`/vc_resources:/resources \
|
||||||
|
# # -e LOCAL_UID=$(id -u $USER) \
|
||||||
|
# # -e LOCAL_GID=$(id -g $USER) \
|
||||||
|
# # -p ${TENSORBOARD_PORT}:6006 $DOCKER_IMAGE -t -b ${batch_size} -r
|
||||||
|
# # else
|
||||||
|
# # echo "トレーニングを開始します"
|
||||||
|
# # docker run -it --gpus all --shm-size=128M \
|
||||||
|
# # -v `pwd`/exp/${name}/dataset:/MMVC_Trainer/dataset \
|
||||||
|
# # -v `pwd`/exp/${name}/logs:/MMVC_Trainer/logs \
|
||||||
|
# # -v `pwd`/exp/${name}/filelists:/MMVC_Trainer/filelists \
|
||||||
|
# # -v `pwd`/vc_resources:/resources \
|
||||||
|
# # -e LOCAL_UID=$(id -u $USER) \
|
||||||
|
# # -e LOCAL_GID=$(id -g $USER) \
|
||||||
|
# # -p ${TENSORBOARD_PORT}:6006 $DOCKER_IMAGE -t -b ${batch_size}
|
||||||
|
# # fi
|
||||||
|
# # fi
|
||||||
|
|
||||||
|
# # if $voice_change_flag; then
|
||||||
|
# # if [[ -z "$config" ]]; then
|
||||||
|
# # warn "コンフィグファイル(-c)を指定してください"
|
||||||
|
# # fi
|
||||||
|
# # if [[ -z "$model" ]]; then
|
||||||
|
# # warn "モデルファイル(-m)を指定してください"
|
||||||
|
# # fi
|
||||||
|
# # if [ "${gpu}" = "on" ]; then
|
||||||
|
# # echo "GPUをマウントして起動します。"
|
||||||
|
|
||||||
|
# # docker run -it --gpus all --shm-size=128M \
|
||||||
|
# # -v `pwd`/vc_resources:/resources \
|
||||||
|
# # -e LOCAL_UID=$(id -u $USER) \
|
||||||
|
# # -e LOCAL_GID=$(id -g $USER) \
|
||||||
|
# # -e EX_IP="`hostname -I`" \
|
||||||
|
# # -e EX_PORT=${port} \
|
||||||
|
# # -p ${port}:8080 $DOCKER_IMAGE -v -c ${config} -m ${model}
|
||||||
|
# # elif [ "${gpu}" = "off" ]; then
|
||||||
|
# # echo "CPUのみで稼働します。GPUは使用できません。"
|
||||||
|
# # docker run -it --shm-size=128M \
|
||||||
|
# # -v `pwd`/vc_resources:/resources \
|
||||||
|
# # -e LOCAL_UID=$(id -u $USER) \
|
||||||
|
# # -e LOCAL_GID=$(id -g $USER) \
|
||||||
|
# # -e EX_IP="`hostname -I`" \
|
||||||
|
# # -e EX_PORT=${port} \
|
||||||
|
# # -p ${port}:8080 $DOCKER_IMAGE -v -c ${config} -m ${model}
|
||||||
|
# # else
|
||||||
|
# # echo ${gpu}
|
||||||
|
# # warn "-g は onかoffで指定して下さい。"
|
||||||
|
|
||||||
|
# # fi
|
||||||
|
|
||||||
|
|
||||||
|
# # fi
|
||||||
|
|
||||||
|
|
@ -1,4 +1,4 @@
|
|||||||
FROM dannadori/voice-changer-internal:20221028_220538 as front
|
FROM dannadori/voice-changer-internal:20221029_231527 as front
|
||||||
FROM debian:bullseye-slim as base
|
FROM debian:bullseye-slim as base
|
||||||
|
|
||||||
ARG DEBIAN_FRONTEND=noninteractive
|
ARG DEBIAN_FRONTEND=noninteractive
|
||||||
@ -8,7 +8,7 @@ RUN apt-get install -y python3-pip git
|
|||||||
RUN apt-get install -y espeak
|
RUN apt-get install -y espeak
|
||||||
RUN apt-get install -y cmake
|
RUN apt-get install -y cmake
|
||||||
|
|
||||||
RUN git clone --depth 1 https://github.com/isletennos/MMVC_Trainer.git -b v1.3.1.3
|
#RUN git clone --depth 1 https://github.com/isletennos/MMVC_Trainer.git -b v1.3.1.3
|
||||||
|
|
||||||
RUN pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
|
RUN pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
|
||||||
|
|
||||||
@ -24,17 +24,20 @@ RUN pip install tqdm==4.64.0
|
|||||||
RUN pip install retry==0.9.2
|
RUN pip install retry==0.9.2
|
||||||
RUN pip install psutil==5.9.1
|
RUN pip install psutil==5.9.1
|
||||||
RUN pip install python-socketio==5.7.1
|
RUN pip install python-socketio==5.7.1
|
||||||
RUN pip install eventlet==0.33.1
|
RUN pip install matplotlib==3.5.3
|
||||||
|
|
||||||
|
RUN pip install fastapi==0.85.0
|
||||||
|
RUN pip install python-multipart==0.0.5
|
||||||
|
RUN pip install uvicorn==0.18.3
|
||||||
|
RUN pip install websockets==10.4
|
||||||
|
RUN pip install pyOpenSSL==22.0.0
|
||||||
|
|
||||||
RUN pip install pyopenjtalk==0.2.0
|
RUN pip install pyopenjtalk==0.2.0
|
||||||
RUN pip install tensorboard==2.10.0
|
RUN pip install tensorboard==2.10.0
|
||||||
RUN pip install matplotlib==3.5.3
|
|
||||||
|
|
||||||
RUN pip install pyOpenSSL==22.0.0
|
# WORKDIR /MMVC_Trainer/monotonic_align
|
||||||
|
# RUN cythonize -3 -i core.pyx \
|
||||||
WORKDIR /MMVC_Trainer/monotonic_align
|
# && mv core.cpython-39-x86_64-linux-gnu.so monotonic_align/
|
||||||
RUN cythonize -3 -i core.pyx \
|
|
||||||
&& mv core.cpython-39-x86_64-linux-gnu.so monotonic_align/
|
|
||||||
|
|
||||||
|
|
||||||
FROM debian:bullseye-slim
|
FROM debian:bullseye-slim
|
||||||
@ -64,12 +67,11 @@ COPY --from=front --chmod=777 /voice-changer-internal/frontend/dist /voice-chang
|
|||||||
COPY --from=front --chmod=777 /voice-changer-internal/voice-change-service /voice-changer-internal/voice-change-service
|
COPY --from=front --chmod=777 /voice-changer-internal/voice-change-service /voice-changer-internal/voice-change-service
|
||||||
RUN chmod 0777 /voice-changer-internal/voice-change-service
|
RUN chmod 0777 /voice-changer-internal/voice-change-service
|
||||||
|
|
||||||
##### Soft VC
|
# ##### Soft VC
|
||||||
COPY --from=front /hubert /hubert
|
# COPY --from=front /hubert /hubert
|
||||||
COPY --from=front /acoustic-model /acoustic-model
|
# COPY --from=front /acoustic-model /acoustic-model
|
||||||
COPY --from=front /hifigan /hifigan
|
# COPY --from=front /hifigan /hifigan
|
||||||
|
# COPY --from=front /models /models
|
||||||
COPY --from=front /models /models
|
|
||||||
|
|
||||||
|
|
||||||
ENTRYPOINT ["/bin/bash", "setup.sh"]
|
ENTRYPOINT ["/bin/bash", "setup.sh"]
|
||||||
|
Loading…
Reference in New Issue
Block a user