WIP: refactor, move v13

This commit is contained in:
wataru 2023-03-08 01:40:03 +09:00
parent bbb068be72
commit c14ea07dd5
7 changed files with 196 additions and 8 deletions

4
.gitignore vendored
View File

@ -4,8 +4,8 @@ node_modules
__pycache__
server/upload_dir/
server/MMVC_Trainer/
server/MMVC_Client/
server/MMVC_Client_v13/
server/MMVC_Client_v15/
server/keys
server/info
server/in.wav

View File

@ -25,6 +25,6 @@ cd ..
# for 1.5
cd MMVC_Client
git checkout 1424609e53c79e2d629add10ae4bfb16fc0c3c82
git checkout 6dd4f2451fec701d85f611fa831d7e5f4ddce8da
cd ..
```

View File

@ -0,0 +1,187 @@
import sys
sys.path.append("MMVC_Client_v13/python")
from dataclasses import dataclass, asdict
import os
import numpy as np
import torch
import onnxruntime
import pyworld as pw
from symbols import symbols
from models import SynthesizerTrn
from voice_changer.MMVCv13.TrainerFunctions import TextAudioSpeakerCollate, spectrogram_torch, load_checkpoint, get_hparams_from_file
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
@dataclass
class MMVCv13Settings():
gpu: int = 0
srcId: int = 0
dstId: int = 101
framework: str = "PyTorch" # PyTorch or ONNX
pyTorchModelFile: str = ""
onnxModelFile: str = ""
configFile: str = ""
# ↓mutableな物だけ列挙
intData = ["gpu", "srcId", "dstId"]
floatData = []
strData = ["framework"]
class MMVCv13:
def __init__(self):
self.settings = MMVCv13Settings()
self.net_g = None
self.onnx_session = None
self.gpu_num = torch.cuda.device_count()
self.text_norm = torch.LongTensor([0, 6, 0])
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None):
self.settings.configFile = config
self.hps = get_hparams_from_file(config)
if pyTorch_model_file != None:
self.settings.pyTorchModelFile = pyTorch_model_file
if onnx_model_file:
self.settings.onnxModelFile = onnx_model_file
# PyTorchモデル生成
if pyTorch_model_file != None:
self.net_g = SynthesizerTrn(
len(symbols),
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
n_speakers=self.hps.data.n_speakers,
**self.hps.model)
self.net_g.eval()
load_checkpoint(pyTorch_model_file, self.net_g, None)
# ONNXモデル生成
if onnx_model_file != None:
ort_options = onnxruntime.SessionOptions()
ort_options.intra_op_num_threads = 8
self.onnx_session = onnxruntime.InferenceSession(
onnx_model_file,
providers=providers
)
return self.get_info()
def update_setteings(self, key: str, val: any):
if key == "onnxExecutionProvider" and self.onnx_session != None:
if val == "CUDAExecutionProvider":
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
self.settings.gpu = 0
provider_options = [{'device_id': self.settings.gpu}]
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
else:
self.onnx_session.set_providers(providers=[val])
elif key in self.settings.intData:
setattr(self.settings, key, int(val))
if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None:
providers = self.onnx_session.get_providers()
print("Providers:", providers)
if "CUDAExecutionProvider" in providers:
provider_options = [{'device_id': self.settings.gpu}]
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
else:
return False
return True
def get_info(self):
data = asdict(self.settings)
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session != None else []
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
for f in files:
if data[f] != None and os.path.exists(data[f]):
data[f] = os.path.basename(data[f])
else:
data[f] = ""
return data
def _get_spec(self, audio: any):
spec = spectrogram_torch(audio, self.hps.data.filter_length,
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
center=False)
spec = torch.squeeze(spec, 0)
return spec
def generate_input(self, newData: any, convertSize: int):
newData = newData.astype(np.float32)
if hasattr(self, "audio_buffer"):
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
else:
self.audio_buffer = newData
self.audio_buffer = self.audio_buffer[-(convertSize):] # 変換対象の部分だけ抽出
audio = torch.FloatTensor(self.audio_buffer)
audio_norm = audio / self.hps.data.max_wav_value # normalize
audio_norm = audio_norm.unsqueeze(0) # unsqueeze
spec = self._get_spec(audio_norm)
sid = torch.LongTensor([int(self.settings.srcId)])
data = (self.text_norm, spec, audio_norm, sid)
data = TextAudioSpeakerCollate()([data])
return data
def _onnx_inference(self, data):
if hasattr(self, "onnx_session") == False or self.onnx_session == None:
print("[Voice Changer] No ONNX session.")
return np.zeros(1).astype(np.int16)
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x for x in data]
sid_tgt1 = torch.LongTensor([self.settings.dstId])
# if spec.size()[2] >= 8:
audio1 = self.onnx_session.run(
["audio"],
{
"specs": spec.numpy(),
"lengths": spec_lengths.numpy(),
"sid_src": sid_src.numpy(),
"sid_tgt": sid_tgt1.numpy()
})[0][0, 0] * self.hps.data.max_wav_value
return audio1
def _pyTorch_inference(self, data):
if hasattr(self, "net_g") == False or self.net_g == None:
print("[Voice Changer] No pyTorch session.")
return np.zeros(1).astype(np.int16)
if self.settings.gpu < 0 or self.gpu_num == 0:
dev = torch.device("cpu")
else:
dev = torch.device("cuda", index=self.settings.gpu)
with torch.no_grad():
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.to(dev) for x in data]
sid_target = torch.LongTensor([self.settings.dstId]).to(dev)
audio1 = (self.net_g.to(dev).voice_conversion(spec, spec_lengths, sid_src=sid_src,
sid_tgt=sid_target)[0, 0].data * self.hps.data.max_wav_value)
result = audio1.float().cpu().numpy()
return result
def inference(self, data):
if self.settings.framework == "ONNX":
audio = self._onnx_inference(data)
else:
audio = self._pyTorch_inference(data)
return audio
def destroy(self):
del self.net_g
del self.onnx_session

View File

@ -1,5 +1,5 @@
import sys
sys.path.append("MMVC_Client/python")
sys.path.append("MMVC_Client_v15/python")
from dataclasses import dataclass, asdict
import os
import numpy as np
@ -8,7 +8,7 @@ import onnxruntime
import pyworld as pw
from models import SynthesizerTrn
from voice_changer.client_modules import convert_continuos_f0, spectrogram_torch, TextAudioSpeakerCollate, get_hparams_from_file, load_checkpoint
from voice_changer.MMVCv15.client_modules import convert_continuos_f0, spectrogram_torch, TextAudioSpeakerCollate, get_hparams_from_file, load_checkpoint
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]

View File

@ -1,6 +1,5 @@
import sys
sys.path.append("MMVC_Client/python")
from const import TMP_DIR
import torch
@ -11,7 +10,8 @@ from dataclasses import dataclass, asdict
import resampy
from voice_changer.MMVCv15 import MMVCv15
# from voice_changer.MMVCv15.MMVCv15 import MMVCv15
from voice_changer.MMVCv13.MMVCv13 import MMVCv13
from voice_changer.IORecorder import IORecorder
from voice_changer.IOAnalyzer import IOAnalyzer
@ -53,7 +53,8 @@ class VoiceChanger():
self.currentCrossFadeEndRate = 0
self.currentCrossFadeOverlapSize = 0
self.voiceChanger = MMVCv15()
# self.voiceChanger = MMVCv15()
self.voiceChanger = MMVCv13()
self.gpu_num = torch.cuda.device_count()
self.prev_audio = np.zeros(1)