mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 13:35:12 +03:00
WIP: refactor, move v13
This commit is contained in:
parent
bbb068be72
commit
c14ea07dd5
4
.gitignore
vendored
4
.gitignore
vendored
@ -4,8 +4,8 @@ node_modules
|
||||
__pycache__
|
||||
|
||||
server/upload_dir/
|
||||
server/MMVC_Trainer/
|
||||
server/MMVC_Client/
|
||||
server/MMVC_Client_v13/
|
||||
server/MMVC_Client_v15/
|
||||
server/keys
|
||||
server/info
|
||||
server/in.wav
|
||||
|
@ -25,6 +25,6 @@ cd ..
|
||||
|
||||
# for 1.5
|
||||
cd MMVC_Client
|
||||
git checkout 1424609e53c79e2d629add10ae4bfb16fc0c3c82
|
||||
git checkout 6dd4f2451fec701d85f611fa831d7e5f4ddce8da
|
||||
cd ..
|
||||
```
|
187
server/voice_changer/MMVCv13/MMVCv13.py
Normal file
187
server/voice_changer/MMVCv13/MMVCv13.py
Normal file
@ -0,0 +1,187 @@
|
||||
import sys
|
||||
sys.path.append("MMVC_Client_v13/python")
|
||||
from dataclasses import dataclass, asdict
|
||||
import os
|
||||
import numpy as np
|
||||
import torch
|
||||
import onnxruntime
|
||||
import pyworld as pw
|
||||
|
||||
from symbols import symbols
|
||||
from models import SynthesizerTrn
|
||||
from voice_changer.MMVCv13.TrainerFunctions import TextAudioSpeakerCollate, spectrogram_torch, load_checkpoint, get_hparams_from_file
|
||||
|
||||
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
||||
|
||||
|
||||
@dataclass
|
||||
class MMVCv13Settings():
|
||||
gpu: int = 0
|
||||
srcId: int = 0
|
||||
dstId: int = 101
|
||||
|
||||
framework: str = "PyTorch" # PyTorch or ONNX
|
||||
pyTorchModelFile: str = ""
|
||||
onnxModelFile: str = ""
|
||||
configFile: str = ""
|
||||
|
||||
# ↓mutableな物だけ列挙
|
||||
intData = ["gpu", "srcId", "dstId"]
|
||||
floatData = []
|
||||
strData = ["framework"]
|
||||
|
||||
|
||||
class MMVCv13:
|
||||
def __init__(self):
|
||||
self.settings = MMVCv13Settings()
|
||||
self.net_g = None
|
||||
self.onnx_session = None
|
||||
|
||||
self.gpu_num = torch.cuda.device_count()
|
||||
self.text_norm = torch.LongTensor([0, 6, 0])
|
||||
|
||||
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None):
|
||||
self.settings.configFile = config
|
||||
self.hps = get_hparams_from_file(config)
|
||||
|
||||
if pyTorch_model_file != None:
|
||||
self.settings.pyTorchModelFile = pyTorch_model_file
|
||||
if onnx_model_file:
|
||||
self.settings.onnxModelFile = onnx_model_file
|
||||
|
||||
# PyTorchモデル生成
|
||||
if pyTorch_model_file != None:
|
||||
self.net_g = SynthesizerTrn(
|
||||
len(symbols),
|
||||
self.hps.data.filter_length // 2 + 1,
|
||||
self.hps.train.segment_size // self.hps.data.hop_length,
|
||||
n_speakers=self.hps.data.n_speakers,
|
||||
**self.hps.model)
|
||||
self.net_g.eval()
|
||||
load_checkpoint(pyTorch_model_file, self.net_g, None)
|
||||
|
||||
# ONNXモデル生成
|
||||
if onnx_model_file != None:
|
||||
ort_options = onnxruntime.SessionOptions()
|
||||
ort_options.intra_op_num_threads = 8
|
||||
self.onnx_session = onnxruntime.InferenceSession(
|
||||
onnx_model_file,
|
||||
providers=providers
|
||||
)
|
||||
return self.get_info()
|
||||
|
||||
def update_setteings(self, key: str, val: any):
|
||||
if key == "onnxExecutionProvider" and self.onnx_session != None:
|
||||
if val == "CUDAExecutionProvider":
|
||||
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
|
||||
self.settings.gpu = 0
|
||||
provider_options = [{'device_id': self.settings.gpu}]
|
||||
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
|
||||
else:
|
||||
self.onnx_session.set_providers(providers=[val])
|
||||
elif key in self.settings.intData:
|
||||
setattr(self.settings, key, int(val))
|
||||
if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None:
|
||||
providers = self.onnx_session.get_providers()
|
||||
print("Providers:", providers)
|
||||
if "CUDAExecutionProvider" in providers:
|
||||
provider_options = [{'device_id': self.settings.gpu}]
|
||||
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
|
||||
elif key in self.settings.floatData:
|
||||
setattr(self.settings, key, float(val))
|
||||
elif key in self.settings.strData:
|
||||
setattr(self.settings, key, str(val))
|
||||
else:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def get_info(self):
|
||||
data = asdict(self.settings)
|
||||
|
||||
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session != None else []
|
||||
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
||||
for f in files:
|
||||
if data[f] != None and os.path.exists(data[f]):
|
||||
data[f] = os.path.basename(data[f])
|
||||
else:
|
||||
data[f] = ""
|
||||
|
||||
return data
|
||||
|
||||
def _get_spec(self, audio: any):
|
||||
spec = spectrogram_torch(audio, self.hps.data.filter_length,
|
||||
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
||||
center=False)
|
||||
spec = torch.squeeze(spec, 0)
|
||||
return spec
|
||||
|
||||
def generate_input(self, newData: any, convertSize: int):
|
||||
newData = newData.astype(np.float32)
|
||||
|
||||
if hasattr(self, "audio_buffer"):
|
||||
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
|
||||
else:
|
||||
self.audio_buffer = newData
|
||||
|
||||
self.audio_buffer = self.audio_buffer[-(convertSize):] # 変換対象の部分だけ抽出
|
||||
|
||||
audio = torch.FloatTensor(self.audio_buffer)
|
||||
audio_norm = audio / self.hps.data.max_wav_value # normalize
|
||||
audio_norm = audio_norm.unsqueeze(0) # unsqueeze
|
||||
spec = self._get_spec(audio_norm)
|
||||
sid = torch.LongTensor([int(self.settings.srcId)])
|
||||
|
||||
data = (self.text_norm, spec, audio_norm, sid)
|
||||
data = TextAudioSpeakerCollate()([data])
|
||||
|
||||
return data
|
||||
|
||||
def _onnx_inference(self, data):
|
||||
if hasattr(self, "onnx_session") == False or self.onnx_session == None:
|
||||
print("[Voice Changer] No ONNX session.")
|
||||
return np.zeros(1).astype(np.int16)
|
||||
|
||||
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x for x in data]
|
||||
sid_tgt1 = torch.LongTensor([self.settings.dstId])
|
||||
# if spec.size()[2] >= 8:
|
||||
audio1 = self.onnx_session.run(
|
||||
["audio"],
|
||||
{
|
||||
"specs": spec.numpy(),
|
||||
"lengths": spec_lengths.numpy(),
|
||||
"sid_src": sid_src.numpy(),
|
||||
"sid_tgt": sid_tgt1.numpy()
|
||||
})[0][0, 0] * self.hps.data.max_wav_value
|
||||
return audio1
|
||||
|
||||
def _pyTorch_inference(self, data):
|
||||
if hasattr(self, "net_g") == False or self.net_g == None:
|
||||
print("[Voice Changer] No pyTorch session.")
|
||||
return np.zeros(1).astype(np.int16)
|
||||
|
||||
if self.settings.gpu < 0 or self.gpu_num == 0:
|
||||
dev = torch.device("cpu")
|
||||
else:
|
||||
dev = torch.device("cuda", index=self.settings.gpu)
|
||||
|
||||
with torch.no_grad():
|
||||
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.to(dev) for x in data]
|
||||
sid_target = torch.LongTensor([self.settings.dstId]).to(dev)
|
||||
|
||||
audio1 = (self.net_g.to(dev).voice_conversion(spec, spec_lengths, sid_src=sid_src,
|
||||
sid_tgt=sid_target)[0, 0].data * self.hps.data.max_wav_value)
|
||||
result = audio1.float().cpu().numpy()
|
||||
|
||||
return result
|
||||
|
||||
def inference(self, data):
|
||||
if self.settings.framework == "ONNX":
|
||||
audio = self._onnx_inference(data)
|
||||
else:
|
||||
audio = self._pyTorch_inference(data)
|
||||
return audio
|
||||
|
||||
def destroy(self):
|
||||
del self.net_g
|
||||
del self.onnx_session
|
@ -1,5 +1,5 @@
|
||||
import sys
|
||||
sys.path.append("MMVC_Client/python")
|
||||
sys.path.append("MMVC_Client_v15/python")
|
||||
from dataclasses import dataclass, asdict
|
||||
import os
|
||||
import numpy as np
|
||||
@ -8,7 +8,7 @@ import onnxruntime
|
||||
import pyworld as pw
|
||||
|
||||
from models import SynthesizerTrn
|
||||
from voice_changer.client_modules import convert_continuos_f0, spectrogram_torch, TextAudioSpeakerCollate, get_hparams_from_file, load_checkpoint
|
||||
from voice_changer.MMVCv15.client_modules import convert_continuos_f0, spectrogram_torch, TextAudioSpeakerCollate, get_hparams_from_file, load_checkpoint
|
||||
|
||||
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
||||
|
@ -1,6 +1,5 @@
|
||||
|
||||
import sys
|
||||
sys.path.append("MMVC_Client/python")
|
||||
|
||||
from const import TMP_DIR
|
||||
import torch
|
||||
@ -11,7 +10,8 @@ from dataclasses import dataclass, asdict
|
||||
import resampy
|
||||
|
||||
|
||||
from voice_changer.MMVCv15 import MMVCv15
|
||||
# from voice_changer.MMVCv15.MMVCv15 import MMVCv15
|
||||
from voice_changer.MMVCv13.MMVCv13 import MMVCv13
|
||||
from voice_changer.IORecorder import IORecorder
|
||||
from voice_changer.IOAnalyzer import IOAnalyzer
|
||||
|
||||
@ -53,7 +53,8 @@ class VoiceChanger():
|
||||
self.currentCrossFadeEndRate = 0
|
||||
self.currentCrossFadeOverlapSize = 0
|
||||
|
||||
self.voiceChanger = MMVCv15()
|
||||
# self.voiceChanger = MMVCv15()
|
||||
self.voiceChanger = MMVCv13()
|
||||
|
||||
self.gpu_num = torch.cuda.device_count()
|
||||
self.prev_audio = np.zeros(1)
|
||||
|
Loading…
Reference in New Issue
Block a user